
KDAB | the Qt, OpenGL and C++ experts 1

Qt offers developers everything they need to 
make a cross-platform app with all the bells 
and whistles, while the 3D portion helps take 
care of all the graphical rendering details. Make 
no mistake, it’s still a complex technology, but 
it’s a great choice for easily creating rich 3D 
applications. 

This is the first in a series of whitepapers 
intended to help developers create highly 
polished Qt 3D applications, including 
descriptions of the technology components, 
the rationale behind their designs, and 
straightforward examples. 

This paper assumes that you already have 
experience with C++ and QML.

Qt 3D architectural decisions

To have a better understanding of how to 
use Qt 3D, it’s important to examine the key 
requirements that drove its architecture:

• Be able to create, draw, and move 2D 
shapes and 3D meshes

• Handle a wide variety of visual techniques 
such as shadowing, occlusion, high-dynamic 
range, deferred rendering, and physical-
based rendering

• Draw scenes in near real-time, with graphic 
performance that scales with the power of 
the GPU and available CPU cores 

Learning to create 3D applications can be an overwhelming task even 
for seasoned developers because of all the new terminology, visual 
concepts, and advanced math. To simplify the job, many developers 
use a framework like Qt 3D. 

Qt 3D Basics
Paul Lemire Se

pt
em

be
r 

18



KDAB | the Qt, OpenGL and C++ experts 2

Qt 3D was designed using two fundamental principles: make 
it fast and make it flexible.

• Have an extensible framework that can 
handle other aspects of 3D objects like 
physics simulation, collision detection, 
positional audio, animation skeletons, path 
finding, particles, etc 

Boiling down all of these demanding 
requirements leaves us with two fundamental 
principles: make it fast and make it flexible.

Let’s get started with a high-level view of the 
frame graph and its related concept, the 
scene graph, both of which are necessary for 
building Qt 3D graphic images. Why are they 
part of Qt 3D? The scene graph is a data-driven 
description of what to render while the frame 
graph is a data-driven description of how to 
render. The frame graph allows developers to 
select a renderer, making it infinitely flexible yet 
as lightweight as possible for each application. 
Using a data-driven description in the frame 
graph allows developers to choose between 
using a simple forward renderer (including a 
z-fill pass), using a deferred renderer, describing 
how to render transparent or semi-transparent 
objects, and so on. And as the frame graph is 
data-driven, it’s very easy to dynamically modify 
at runtime without a line of C++ code. However, 
it also allows you to implement any rendering 
algorithm – if Qt 3D doesn’t provide what you 
need out of the box, you can always compose 
your own. 

Qt 3D through Space Invaders

Let’s explore the Qt 3D architecture by 
imagining we want to translate the old arcade 
classic Space Invaders into Qt 3D. This example 
is simple enough to easily understand, yet 
contains enough complexity to help us explore 
the necessary design concepts.

We begin by enumerating some typical object 
types that might be found in an implementation 
of Space Invaders:

• Player’s ground cannon

• Defensive barriers

• Enemy spaceships

• Enemy boss flying saucer

• Bullets from both enemy ships and the 
player’s ground cannon

In a traditional C++ design these objects would 
likely end up implemented as classes arranged 
in an inheritance tree. Various branches in 
the inheritance tree might add additional 
functionality to the root class for features such 
as “accepts user input”, “plays a sound”, “has 
animation”, “requires collision detection”, and so 
on. However, designing an elegant inheritance 
tree for even such a simple example is not easy. 
An object model based on inheritance has a 
number of issues, including:

Essential elements in the Space Invaders game



KDAB | the Qt, OpenGL and C++ experts 3

Qt 3D uses an entity-component-system to avoid the 
problems of complex inheritance trees, which may dictate 
awkward class hierarchies.

• Deep and wide inheritance hierarchies that 
are difficult to maintain and extend

• An inheritance taxonomy that is set in stone 
at compile time

• Class inheritance levels that can only classify 
upon a single criteria or axis

• Shared functionality that tends to “bubble 
up” throughout the class hierarchy over time

• The inevitability that library designers will 
never know all the things library users want 
to do

If you’ve worked with an inheritance tree of any 
size or complexity, you’ll know that modifying 
one can be a huge hassle. Not only do you 
have to understand the original taxonomy, your 
proposed changes need to fit cleanly within 
it – which they often do not. The result is that 
the project can devolve into the original class 
structure plus a mess of ugly hacks on top.

To avoid these problems, Qt 3D uses an Entity 
Component System (ECS) to impart functionality 
to an instance of an object through aggregation. 
An entity represents an object that is devoid 
of any specific behaviour or characteristics. 
Behaviours are described in one or more 
QComponents, which are then aggregated to 
the entity.

What would that look like in our Space 
Invaders example? An enemy spaceship would 
be represented as a QEntity with several 
attached QComponents to provide the entity’s 
behaviour: render, emit sound, detect collisions, 
and attack. The player’s ground cannon would 
have similar components to the enemy space 
invader, except instead of the attack component 
it would have a component that accepts player 
input, allowing it to move side to side and fire 
bullets.

The entire game would be represented with a 
single scene graph that represents all of the 
objects as QEntities (enemy invaders, player’s 
ground cannon, shields, bullets, etc). 

A key part of the Qt 3D ECS paradigm is 
Aspects. Objects that require a specific type 
of functionality belong to an aspect, and 
each aspect is registered with the various 
components that provide its specific behaviour. 
On every display frame, aspects are asked for 
a set of tasks to execute – which includes any 
dependent tasks. The aspects find all related 
components and execute their behaviour.

As this is getting a bit convoluted, some 
examples may help. QEntities that need to 
draw themselves must have QComponents 
with a rendering aspect. A renderer aspect 
looks for QEntities that have Mesh, Material, 
or Transformation components – components 
that require displaying. Similarly, a physics 
simulation aspect looks for entities that 
have a collision volume, mass, coefficient of 
friction, etc. An audio aspect finds entities with 
components that need to emit sounds. And  
so on. 

Example QEntity/QComponent structure



KDAB | the Qt, OpenGL and C++ experts 4

A nice feature of Qt 3D’s ECS is that we can dynamically 
change how an object behaves at runtime simply by adding or 
removing components.

Dynamic behaviour with the ECS

A nice feature of Qt 3D’s ECS is that, because 
it uses aggregation rather than inheritance, we 
can dynamically change how an object behaves 
at runtime simply by adding or removing 
components. Want your cannon to be invincible 
to enemy bullets after shooting a power-up? No 
problem. Just temporarily remove the entity’s 
collision volume component and, when the 
power-up times out, add the collision volume 
back in again. There is no need to make a 
special one-off subclass.

aspect utilizes a Mesh component to retrieve 
the per-vertex data that should be sent down 
the OpenGL pipeline.

An example

To give you a concrete example of how to draw 
something in Qt 3D using the QML API, we’ll 
draw a single entity – a trefoil knot. To make 
it slightly more interesting, we’ll use a custom 
set of shaders that implement a single-pass 
wireframe rendering method. This example is 
contained in the Qt Example projects. To follow 
along, load up the Qt IDE, go to Welcome | 
Examples, and search for Qt 3D: Wireframe 
QML Example.

Qt Creator provides lots of Qt 3D examples like 
the wireframe trefoil knot used here that cover 
many aspects of application development.

Relationship of QEntity and QComponent

QEntity aggregates zero or more 
QComponents to define the object’s behaviour 
and, as we’ve described, can be dynamically 
changed. But how do you create custom 
behaviours? Simple – by creating a new aspect 
(or extending an existing one) to add the 
methods necessary for the corresponding 
components to do their work, and then adding 
the data needed to drive the aspect’s behaviour 
to the component. For example, a renderer 

Let’s start with the code, followed by an 
explanation of what each chunk does.

Example trefoil knot



KDAB | the Qt, OpenGL and C++ experts 5

We use Entity as the root element of our custom Trefoil knot 
type, exposing our custom properties just as you would with 
any other type in QML.

Code sample 1: TrefoilKnot.qml 

import Qt3D.Core 2.0
import Qt3D.Render 2.0

Entity {
    id: root

    property real x: 0.0
    property real y: 0.0
    property real z: 0.0
    property real scale: 1.0
    property real theta: 0.0
    property real phi: 0.0
    property Material material

    components: [ transform, mesh,  
                   root.material ]

    Transform {
        id: transform
        translation: 
            Qt.vector3d(root.x, 
                     root.y,root.z)
        rotation: 
            fromEulerAngles(theta, 
                    phi, 0)
        scale: root.scale
    }

    Mesh {
        id: mesh
        source: 
            “assets/obj/trefoil.obj”
    }

}

A. What’s going on here? We start off by 
importing the Qt3D.Core 2.0 module that 
provides the Entity type and value type 
helpers like Qt.vector3d(). Similarly, we also 
import the Qt3D.Render 2.0 for the renderer 
aspect. (If we were using components from 
other aspects, we would also need to import 
their corresponding QML module here too.)

B. We use Entity as the root element of 
our custom Trefoil knot type, exposing our 

custom properties (x, y, scale, theta, phi, 
and material) just as you would with any 
other type in QML. (You’ll note that in QML, 
we use Entity and Component – rest assured 
that these refer to the same classes as their 
underlying C++ equivalents, QEntity and 
QComponent.)

D. In addition to aggregating components, 
Entity objects can be used to group child 
objects together (just as Qt Quick 2 uses the 
Item object), such as the Transform and 
Mesh components. The Mesh component uses 
its source property to load in a static set of 
geometry (such as vertex positions, normal 
vectors, and texture coordinates,) from a file 
in the Wavefront Obj format. (This data was 
exported from the excellent and free Blender 
application.) The Transform component 
specifies how the renderer should transform 
the geometry when it is drawn with the OpenGL 
pipeline. (In addition to creating objects through 
a Mesh element, Qt 3D also allows dynamic 
generation of per-vertex attribute data through 
C++ hooks called by the task-based engine.)

C. But we skipped over something – the 
components property, what is that? Simply 
instantiating Components is not enough to 
allow them to have special behaviours. The 
Entity must aggregate the Components using 
its components property, which defines the 
subcomponents and allows them to be shared 
between multiple entities. So we take our 
transform and mesh components, and list them 
under components so they are accessible. We 
also list a component of type root.Material 
that we haven’t defined within TrefoilKnot.qml  
– this is a property that allows users to easily 
customise the appearance of the entity, 
something that we will make use of shortly.

Now that we have defined a custom Entity, 
here’s how to use it to actually get our desired 
result. 

⎫
⎬ A
⎭

⎫
⎪ 
⎪  
⎪ 
⎪
⎬ B
⎪
⎪
⎪
⎪
⎪
⎭

⎫
⎬ C
⎭

⎫
⎪
⎪ 
⎪ 
⎪ 
⎪ 
⎪  
⎪
⎬ D
⎪
⎪ 
⎪ 
⎪ 
⎪ 
⎪
⎪
⎪
⎭



KDAB | the Qt, OpenGL and C++ experts 6

The Qt 3D material system allows multiple rendering passes 
with different state sets, provides mechanisms for overriding 
parameters at different levels, and easily switching shaders.

Code sample 2: main.qml 
import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Input 2.0
import Qt3D.Extras 2.0

Entity {
    id: root

    // Render from the mainCamera
    components: [
        RenderSettings {
            activeFrameGraph: 
ForwardRenderer {
                id: renderer
                camera: mainCamera
            }
        },
        // Event Source will be set
        // by the Qt3DQuickWindow
        InputSettings { }
    ]

    BasicCamera {
        id: mainCamera
        position: 
           Qt.vector3d(0.0,0.0,15.0)
    }

    FirstPersonCameraController { camera: 
mainCamera }

    WireframeMaterial {
        id: wireframeMaterial
        effect: WireframeEffect {}
        ambient: 
          Qt.rgba(0.2,0.0,0.0,1.0)
        diffuse: 
          Qt.rgba(0.8,0.0,0.0,1.0)
    }

    TrefoilKnot {
        id: trefoilKnot
        material: wireframeMaterial
    }
}

We start off again with some import statements 
and the same overall structure as in Code 
sample 1, adding a couple for Input and 
Extras. We also again use Entity as a root 
element container.

A. The FrameGraph component uses a 
ForwardRenderer to completely configure the 
renderer without touching any C++ code at all. 
There’s a lot more specialty rendering that you 
can do with a FrameGraph, but we’ll save that 
for future whitepapers.

B. The BasicCamera element is a trivial 
wrapper around the built-in Camera. The 
Camera represents a virtual camera with 
properties for things like near and far planes, 
field of view, aspect ratio, projection type, 
position, orientation, and more. Here, we wrap it 
just to allow us to set the initial position.

C. Next up we have the WireframeMaterial 
element, a custom type that wraps up the 
built-in Material type and sets the effect 
to WireFrameEffect. A built-in wireframe 
rendering effect is handy and an example of Qt 
3D’s innate flexibility. The Qt 3D material system 
can handle different rendering approaches, 
different platforms, and different OpenGL 
versions. This allows for multiple rendering 
passes with different state sets, provides 
mechanisms for overriding parameters at 
different levels, and easily switches shaders — 
all from either C++ or QML property bindings. 
Qt 3D also supports all of the OpenGL 
programmable rendering pipeline stages: 
Vertex, tessellation control and evaluation, 
geometry, fragment, and compute shaders.

⎫
⎪ 
⎪  
⎪ 
⎪ 
⎪
⎬ A
⎪ 
⎪
⎪
⎪
⎪
⎪
⎭

⎫
⎪  
⎬ B
⎪ 
⎪
⎭

⎫
⎪ 
⎪ 
⎪  
⎬ C
⎪ 
⎪ 
⎪ 
⎪
⎭



KDAB | the Qt, OpenGL and C++ experts 7

Qt 3D objects can be easily animated in position, colour, style, 
material, etc with Qt Quick 2 animations – all within QML with 
no C++ code.

Displaying – and animating – our knot

Instantiating the TrefoilKnot and setting its 
material is simplicity itself with a couple of lines 
at the bottom of main.qml. Once we do that, the 
Qt 3D engine in conjunction with the renderer 
aspect has enough information to finally render 
our mesh using the material we specified.

We can easily make things a little more 
interesting by adding some Qt Quick 2 
animations to Code sample 2 – as highlighted in 
the blue boxes below. 

Code sample 3: main.qml, with animation 
code added
import QtQuick 2.1 as QQ2
import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Input 2.0
import Qt3D.Extras 2.0

Entity {
    id: root

    // Render from the mainCamera
    components: [
        RenderSettings {
            activeFrameGraph: 
ForwardRenderer {
                id: renderer
                camera: mainCamera
            }
        },
        // Event Source will be set by the 
Qt3DQuickWindow
        InputSettings { }
    ]

    BasicCamera {
        id: mainCamera
        position: 
            Qt.vector3d( 0.0, 0.0, 15.0 )
    }

    FirstPersonCameraController { camera: 
mainCamera }

    WireframeMaterial {
        id: wireframeMaterial
        effect: WireframeEffect {}
        ambient: 
            Qt.rgba( 0.2, 0.0, 0.0, 1.0 )
        diffuse: 
            Qt.rgba( 0.8, 0.0, 0.0, 1.0 )

        QQ2.SequentialAnimation {
            loops: QQ2.Animation.Infinite
            running: true

            QQ2.NumberAnimation {
                target: wireframeMaterial;
                property: “lineWidth”;
                duration: 1000;
                from: 0.8
                to: 1.8
            }

            QQ2.NumberAnimation {
                target: wireframeMaterial;
                property: “lineWidth”;
                duration: 1000;
                from: 1.8
                to: 0.8
            }

            QQ2.PauseAnimation { 
                 duration: 1500 
            }
        }
    }

    TrefoilKnot {
        id: trefoilKnot
        material: wireframeMaterial
    }
}

This time we also added in a namespace import 
for the Qt Quick 2.1 module. 

The QQ2.SequentialAnimation block 
takes care of the entire 3D animation – using 
what are otherwise standard QML animation 
techniques to make property updates directly 
to the wireFrameMaterial. The property 



KDAB | the Qt, OpenGL and C++ experts 8

Qt 3D lets developers focus on app-specific details instead of 
the myriad of OpenGL structures, math, and calls needed to 
get things working. 

updates are noticed by the QNode base class 
and are automatically sent through to the 
corresponding objects in the renderer aspect. 
The renderer then takes care of translating the 
property updates through to new values for 
uniform variables in the GLSL shader programs. 

Our animation simply pulses the width of the 
wireframe lines – but all the heavy lifting is done 
by the GPU. We'll show Qt 3D key frame based 
animations in a later paper.

Summary

In this whitepaper, we’ve looked at the basic 
structure of Qt 3D and created a simple 
application. The app hides a huge amount of 
the complexity that would be needed for a 
raw OpenGL/C++ app. Qt 3D lets us focus on 
our app-specific details instead of the myriad 
of OpenGL structures, math, and calls needed 
to get things working. Future whitepapers will 
start to dive in deeper, looking at some specific 
techniques developers can use to create 
beautifully rendered 3D scenes, and peeking 
underneath the hood a bit more for Qt 3D.

About the KDAB Group

The KDAB Group is the world’s leading software 
consultancy for architecture, development and 
design of Qt, C++ and OpenGL applications 
across desktop, embedded and mobile 
platforms. KDAB is the biggest independent 
contributor to Qt and is the world’s first ISO 
9001 certified Qt consulting and development 
company. Our experts build run-times, mix 

native and web technologies, solve hardware 
stack performance issues and porting problems 
for hundreds of customers, many among 
the Fortune 500. KDAB’s tools and extensive 
experience in creating, debugging, profiling and 
porting complex applications help developers 
worldwide to deliver successful projects. 
KDAB’s trainers, all full-time developers, provide 
market leading, hands-on, training for Qt, 
OpenGL and modern C++ in multiple languages. 

www.kdab.com

© 2018 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks belong to their respective owners.


