
Migration from MFC to Qt

Qt World Summit 2019, Berlin

Nicolas Arnaud-Cormos

nicolas.arnaud-cormos@kdab.com



About me

• Senior Software Engineer, KDAB

• C++/Qt developer since ~2002

• Living in Limoges, France

2

The Qt, OpenGL
And C++ experts

Who doesn’t mind working on Windows?



Modernizing legacy MFC code

3



You got a big pile of MFC code…

… and now what?

4

MFC

Continue 
as-is

Abandon

Rewrite

Migrate



Reasons to move to Qt

• The MFC framework is on life support
• Qt is supported, is improving, and has a lively community

• The UI feels very out-dated

• The application needs to run on multiple platform

• The application needs to follow new UI paradims (touch-screens…)

• It’s getting harder to add new features, fix bugs (technical debt)

• It’s getting harder to find good MFC developers

• …

5



Rewrite vs Migration

+ Start from clean state

+ Not bound by technical decisions made 
decades ago

+ Revisit and clean up requirements

- Long time to market

- Lost years of knowledge, corner-cases

+ Keep the good, replace the bad

+ Migration can be done incrementally

+ Smaller time to market

- Developers must know both MFC and Qt

- Developers must know migration techniques

6

LoC

Time

Migration

Rewrite



Refactoring

• Avoid mixing migration and refactoring:
• Increase development time

• Prevent comparing old / new code

• Make it harder to find bugs

• Advices for refactoring:
• Refactor once the migration is done (or once the module is migrated)

• Rewrite if the module is isolated from the rest of the code (partial rewrite)

7



What to migrate?

• User interface 
• Moving dialogs and UI elements to Qt equivalents.

• Build system 
• Moving from Microsoft-specific builds to a platform-independent build system 

• Non-UX code 
• Moving the core MFC classes (like strings, files, containers…) to pure C++ or C++ 

with Qt as desired

• Windows APIs 
• Removing any Windows-specific APIs and replacing them with OS-generic 

equivalents



MFC Migration Techniques

9



Clean up your codebase

• Clean up warnings

• Document and simplify development setup
• Make sure to have a reproducible setup

• Make sure 3rd-party libraries are available

• Clean up warnings

• Remove dead-code
• Use static analysis tools

• Clean up warnings

• (Optional) Beautify your code, update coding style
• Automate the work with uncrustify, clang-format…

• Clean up warnings



Integrate Qt into the build system

• Download and install Qt Visual add-in
• https://download.qt.io/archive/vsaddin/

• Add support of Qt add-in in your project
• Edit project.vcxproj

• Add QtVS_v301 keyword

• Add qt_defaults property sheet

• Add qt.props property sheet

• Add qt.targets

• Add QtSettings

• Decide how to handle PCH
• moc supports adding an include

• rcc does not!

11DEMO

https://download.qt.io/archive/vsaddin/


Add QtWinMigrate to your project

• Qt/MFC migration framework
• https://github.com/qtproject/qt-solutions/tree/master/qtwinmigrate

• BSD license

• Contains 3 classes
• QMfcApp – merge the Qt and MFC event loops

• QWinHost – integrate native Win32 widgets/windows into Qt ones

• QWinWidget – integrate Qt widgets into native Win32 widgets

DEMO 12

MFC window

Qt widgets QWinWidget

Qt window

MFC widgets QWinHost

https://github.com/qtproject/qt-solutions/tree/master/qtwinmigrate


Main WindowMain Window

Note on mixed MFC/Qt application

• QtWinMigrate allows to create mixed MFC/Qt application
• The application is almost 100% feature complete during the port

• Two issues with mixed MFC/Qt application:

• Drag’n’drop from MFC to Qt (or vice-versa)

• Focus handling

• 2 different approaches to migration

13

Main Window

Sub-dialog Sub-dialog

Widget Widget

Sub-dialog Sub-dialog

Widget Widget

Main Window

Sub-dialog Sub-dialog

Widget Widget

Sub-dialog Sub-dialog

Widget Widget

B
o

tt
o

m
->

U
p To

p
->D

o
w

n



Migrate dialogs

• UI descriptions are in the resource file (.rc)
• Declarative description

• “Easy” to parse

• Different sections for:

• Dialogs

• Assets

• Strings

• Menus

• Toolbars

• …

DEMO 14



Migrate dialogs – cont.

• Migrate the MFC message map into Qt paradigms
• Qt event handlers

• Qt slots (or normal functions)

DEMO 15

BEGIN_MESSAGE_MAP(CTutorialDlg, CDialog)
ON_WM_PAINT()
ON_WM_TIMER()
ON_WM_LBUTTONDOWN()
ON_WM_MOUSEMOVE()
ON_WM_RBUTTONDOWN()
ON_WM_HSCROLL()
ON_WM_VSCROLL()
ON_BN_CLICKED(ID_BTN_ADD, OnBnClickedBtnAdd)
ON_BN_CLICKED(IDC_TIMER_CONTROL_SLIDERS, ...)

END_MESSAGE_MAP()

void paintEvent(QPaintEvent *event);
void timerEvent(QTimerEvent *event);
void mousePressEvent(QMouseEvent *event);
void mouseMoveEvent(QMouseEvent *event);

Qt event handlers

void OnHScroll(int value);
void OnVScroll(int value);
void OnBnClickedBtnAdd();
void ...();

Qt slots



Migrate dialogs – cont.

• MFC dialog data exchange mechanism

• Qt does not need this complex mechanism
• Use the widget pointers for the ui directly
• Use Qt API for widget calls
• Defer initialization using showEvent

DEMO 16

CString m_EchoText;
CString m_HSliderEcho;
CString m_VSliderEcho;

CSliderCtrl m_VSliderBar;
CSliderCtrl m_HSliderBar;

CString m_MouseEcho;
CString m_TimerEcho;

Dialog Object
Class members

Dialog on the screen
Controls

Link objects in
DoDataExchange

Exchange data
UpdateData

Initialize controls in
OnInitDialog



Migrate other resources

• The resource files (.rc) contain:
• Menus definitions

• Toolbars definitions

• Shortcuts (accelerators) definitions

• Assets list

• Strings translations

• Languages, versions…

• During the migration, it’s important:
• To automate the migration of resources

• To be able to refactor the migrated code

DEMO 17



Migrate controls

• Simple controls (checkbox, buttons…):
• Use simple Qt widgets directly

• Avoid any behavior changes (even if done in MFC)

• Complex controls (property grid, dock system…):
• Usually from existing MFC libraries (ex: Toolkit Pro)

• Create a new Qt widget with:

• Same behaviour as MFC controls

• Same (or close) API as MFC controls

• Minimize changes in code during migration

• Use existing Qt libraries:
• Advancing docking system: KDDockWidgets

DEMO 18

Image from CodeJock website 

https://codejock.com/
https://github.com/KDAB/KDDockWidgets


We have barely scratched the surface

• Document / View architecture
• CDocument, CView…

• SDI, MDI…

• Printing and print previewing

• Threads
• CWinThread…

• Component Object Model
• COM, OLE, ActiveX

19



Conclusion

20



To sum up

• Choose your migration strategy wisely
• Be prepared to defend it internally
• Don’t mix migration and refactoring

• Clean up the code before anything

• Use the Qt/MFC migration framework
• Don’t lose sight of the big picture: removal of MFC

• Find the right level of abstraction
• Use existing libraries if they exist

• Automate all things:
• resource migration
• MFC code migration
• project-specific code migration

• Limit code differences



Thanks!

nicolas.arnaud-cormos@kdab.com

22


