
KDAB | the Qt, OpenGL and C++ experts 1

OpenGL SC certifies a subset of OpenGL ES
software and accelerated hardware under
DO178-B (for aviation cockpits), ISO26262 (for
automotive instrument panels), and ISO 61508
(for industrial automation controls). It primarily
focuses on features needed to render aviation
cockpit displays: digital instrument panels,
2D maps, 3D terrain, and augmented reality
displays.

As an embedded graphics programmer you’re
already familiar with OpenGL ES, but your
company or your customers may begin asking
for OpenGL SC support in your products. You
may be wondering how much time and effort
is needed to port your applications over to

OpenGL SC. What techniques won’t carry over?
Are there functions you can no longer use?
What are the gotchas?

This whitepaper reviews the basic differences in
moving from OpenGL ES to OpenGL SC, to help
you quickly determine what’s needed in skills
and software to make the change. Specifically,
we will compare the latest released version of
both standards: OpenGL ES version 3.2 and
OpenGL SC 2.0. It’s important to note that
OpenGL SC 2.0 is not backward compatible
with OpenGL SC 1.0; as the 2.0 release of the
standard is still relatively recent, it may not yet
be available from your OpenGL vendor.

The need for safety-critical systems with user-friendly interfaces
is on the rise. To respond to this need, the Khronos Group
(responsible for OpenGL, etc) has introduced OpenGL SC, a new
standard that enables graphics in safety critical applications.

OpenGL SC
Sean Harmer – Managing Director UK

M
ar

ch
 2

01
7

KDAB | the Qt, OpenGL and C++ experts 2

OpenGL SC can’t support creating shaders on the fly so
you’ll need to remove any inline shader compilation/
testing/validation code and switch to shaders created at
compile-time.

No Runtime Shaders

Change(s)
• The following functions are removed:
glCompileShader,
glCreateShader,
glAttachShader,
glValidateProgram,
glShaderBinary,
glShaderSource,
glLinkProgram,
glGetShaderiv,
glGetShaderInfoLog,
glGetShaderPrecisionFormat,
glGetShaderSource,
glGetAttachedShaders

Rationale
• Safety critical code doesn’t need to

create shaders on the fly. This moves
all shader compilation to compile-
time and removes the need to include
complex (and difficult to validate) GLSL
compilers in the OpenGL SC drivers

Feature(s)
Possibly
Impacted

• Code that compiles shaders at run-time
for cross-platform compatibility or
toolchain simplicity

Workarounds
• Remove any C/C++ shader compilation/

testing/validation code and switch to
compile-time shader compilation

No Object Deletion

Change(s)
• The following functions are removed:
glDeleteBuffers,
glDeleteFramebuffers,
glDeleteProgram,
glDeleteRenderbuffers,
glDeleteShader,
glDeleteTextures

Rationale
• Safety critical programs do not

dynamically allocate memory, as
memory exhaustion would cause
failure. Routines that dynamically
release resources are not needed
because the program will not stop
executing or return to the operating
system

Feature(s)
Possibly
Impacted

• Libraries containing functions
using exception-safe or Resource
Acquisition Is Initialization (RAII)
resource management techniques

Workarounds
• Create a safety-critical branch that

omits resource deletion for shared
sources

• Use #ifdefs to wrap or remove
resource deletion for safety critical
builds

No glDrawElements

Change(s)
• The glDrawElements function is

removed. Programs must use
glDrawRangeElements instead (added
in OpenGL ES 3.0)

Rationale
• Ensuring that the indicies passed to

the OpenGL function will not exceed
a predefined range helps limit the
extent of validation testing

Feature(s)
Possibly
Impacted

• All functions doing rendering

Workarounds
• Create a wrapper for
glDrawRangeElements that omits start/
end parameters for non-safety critical
builds and calls glDrawElements
instead

No Frame Buffer to Texture Transfers

Change(s)
• The following functions are removed:
glCopyTexImage2D,
glCopyTexSubImage2D

Rationale
• Reading frame buffer into texture

is used in games for special visual
effects, mirrors, etc. There is no need
to read screen pixels into a texture for
safety critical apps

Feature(s)
Possibly
Impacted

• Special post-processing visual filters
applied to screen data (for example,
contrast enhancement)

• Debug routines that grab screen shots
for testing/validation purposes

Workarounds
• Use glReadnPixels instead

KDAB | the Qt, OpenGL and C++ experts 3

Safety critical programs do not dynamically allocate
memory, as memory exhaustion would cause failure.
And memory cleanup isn’t needed as the program shouldn’t
stop executing or return to the operating system.

No glCompressedTexImage2D

Change(s)
• The glCompressedTexImage2D function

is removed. Programs must use
glCompressedTexSubImage2D instead

Rationale
• glCompressedTexImage2D re-allocates

memory for a given texture, and
reallocating is forbidden. One must
use glTexStorage2D to allocate storage
(only once), then upload data into the
texture via glTexSubImage

Feature(s)
Possibly
Impacted

• Any graphics using compressed
textures like background images or
dial/gauge texturing

Workarounds
• Create wrapper for
glCompressedTexImage2D that calls
glCompressedTexSubImage2D and grabs
full image

• Use standard compression formats

No Cube Maps

Change(s)
• The function glTexImage2D is

removed
• The functions glTexParameteri and
glBindTexture will not accept a GL_
TEXTURE_CUBE_MAP parameter

• The following constants are removed:
GL_TEXTURE_CUBE_MAP_NEGATIVE_X
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
GL_TEXTURE_CUBE_MAP_POSITIVE_X
GL_TEXTURE_CUBE_MAP_POSITIVE_Y
GL_TEXTURE_CUBE_MAP_POSITIVE_Z

Rationale
• Texture cubes are typically used for

providing background to virtual reality
gaming environments and are not
necessary for instrument clusters

Feature(s)
Possibly
Impacted

• Artificial horizon indicator (or “8-ball”)
for aircraft/spacecraft

• Sky texture above a 2.5D navigation
map

Workarounds
• Use individual texture for each cube

face
• Use single tall texture with attribute-

specifying faces; use special logic in
fragment shader to grab attribute and
translate into texture y-offset

No Object Verification

Change(s)
• The following functions are removed:
glIsBuffer,
glIsFramebuffer,
glIsRenderbuffer,
glIsShader,
glIsTexture

Rationale
• Typically functions that are used to

test for valid objects before freeing
resources are not needed if no
resources can be freed

Feature(s)
Possibly
Impacted

• Verification checks to ensure APIs
being used correctly

• Unit test frameworks

Workarounds
• Remove validation
• Use #ifdefs to wrap or remove

resource deletion for safety critical
builds

KDAB | the Qt, OpenGL and C++ experts 4

In Open GL SC, APIs that don’t pass buffer size or length
are replaced with an equivalent “n” routine that does (for
example, glReadnPixels instead of glReadPixels).

No Uniform or Attribute Inspection

Change(s)
• The following functions are removed

without replacements:
 glGetActiveAttrib,
glGetActiveUniform

• The functions glGetUniformfv,
glGetUniformiv and glGetUniformuiv
are removed. Programs must use
glGetnUniformfv, glGetnUniformiv,
or glGetnUniformuiv instead (added
in OpenGL ES 3.2)

Rationale
• This family of functions are used

to inspect the Open GL state.
The glGetActive* functions are
susceptible to buffer overrun unless
they use dynamic memory allocation,
neither of which is allowable
for safety critical applications.
The glGetUniform* functions are
substituted for versions that pass the
buffer’s size, allowing prevention of
buffer overruns

Feature(s)
Possibly
Impacted

• Debugging functions
• Unit tests and test scaffolding
• GL state inspection

Workarounds
• If sharing source with code

earlier than OpenGL ES 3.2, wrap
glGetUniform* calls with macro
that tests against buffer size or
discards bufSize parameter and calls
glGetnUniform*

• Convert all glGetUniform* calls to
use glGetnUniform* and add bufSize
parameter

• Remove calls to glGetActiveAttrib
and glGetActiveUniform

No glReadPixels

Change(s)
• The glReadPixels function is

removed. Programs must use
glReadnPixels instead (added in
OpenGL ES 3.2)

Rationale
• Passing size of the buffer allows

checks that prevent buffer overruns

Feature(s)
Possibly
Impacted

• Special post-processing visual filters
applied to screen data (for example,
contrast enhancement)

• Debug routines that grab screen shots
for testing/validation purposes

Workarounds
• If sharing source with code

earlier than OpenGL ES 3.2, wrap
glReadPixels calls with macro
that tests against buffer size or
discards bufSize parameter and calls
glReadnPixels

• Otherwise convert all glReadPixels
calls to use glReadnPixels and add
bufSize parameter

• If using for debugging only, remove
calls

KDAB | the Qt, OpenGL and C++ experts 5

The family of functions that inspect the Open GL state are
susceptible
to buffer overrun unless they use dynamic memory allocation,
neither of which is allowable for safety critical applications.

Conclusion

About the KDAB Group

The future will dramatically increase the
number of embedded systems that we
consider to be safety-critical and as we become
more dependent on those systems, the
consequences of their failure become more
serious. Hence the need for standards like
OpenGL SC.

While implementing a functional safety process
may significantly impact your development,
it won’t be due to OpenGL SC. A greater

concern may be making safety-critical code
without using memory frees or reallocation –
avoiding C++ delete – which may require a bit
more restructuring than just a handful of API
alterations. The differences between OpenGL
ES and OpenGL SC are limited to a handful of
functions, many of which aren’t in common use.
This breakdown shows that adopting OpenGL
SC requires minimal changes to your existing
OpenGL ES source code and habits, which
should be somewhat of a relief.

The KDAB Group is the world’s leading software
consultancy for architecture, development and
design of Qt, C++ and OpenGL applications
across desktop, embedded and mobile
platforms. KDAB is the biggest independent
contributor to Qt. Our experts build run-
times, mix native and web technologies, solve
hardware stack performance issues and
porting problems for hundreds of customers,

many among the Fortune 500. KDAB’s tools and
extensive experience in creating, debugging,
profiling and porting complex applications
help developers worldwide to deliver
successful projects. KDAB’s trainers, all full-time
developers, provide market leading, hands-on,
training for Qt, OpenGL and modern C++ in
multiple languages. Founded in 1999, KDAB has
offices throughout North America and Europe.

www.kdab.com
© 2017 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks belong to their respective owners.

