
KDAB | the Qt, OpenGL and C++ experts 1

One of the changes you may notice moving
from Qt 5.x to Qt 6.x is that the Qt build system
was ported from QMake to CMake. QMake was
starting to show its age since it was only receiv-
ing maintenance fixes and critical updates. It
had a number of issues in handling distributed
builds, implementing configuration checks, and
scaling for large projects. Cross-compilation,
something that Qt is known for, was challenging
to set up in QMake for all but the simplest
cases. Those challenges, among others, caused
The Qt Company and Qt project teams to move
the build over to CMake.

CMake is an independent and reliable build
system (and the de facto standard for C++)
with a lot of flexibility to handle the increasing
demands that Qt has grown into. If you’re still
using QMake (or even earlier make systems),
you’ll want to seriously consider moving to
CMake since there are a lot of powerful benefits
that it brings to your build. While we only have
space to cover the highlights, hopefully you’ll
get a taste of how well it handles build files and
dependency generation – two of the main tasks
we need out of our build system. Community
support for CMake is another big benefit. With
active forums and developer assistance, you’ll
be able to find and solve your most thorny

The build system for Qt 6 uses CMake. What are the benefits of
CMake, and how can it help transform your build system? Here are
the basic facts you need to know to take advantage of CMake for
building your Qt applications.

CMake and Qt
Kevin Funk

Ju
ly

 2
2

KDAB | the Qt, OpenGL and C++ experts 2

CMake makes it much easier to manage dependencies
from other modules and libraries, allowing you to detect
and use third-party packages on a variety of platforms.

build-time challenges. Good news!

Why is Qt’s use of CMake going to be good
news for Qt developers? If you’re not familiar
with CMake, a little introduction is in order.

CMake allows developers to use their preferred
tools, it is used in hundreds of projects, and it’s
an open source tool supported by a huge com-
munity. Because CMake directly supports IDE
project exports for your choice of IDE, like VS or
XCode, interactive debugging on your platform
of choice will become much easier. Since CMake
support in Microsoft’s popular Visual Studio IDE
has recently seen significant improvements, it
makes CMake a good choice if you’re developing
on the Windows platform.

CMake also makes it much easier to manage
dependencies from other modules and libraries.
This is because CMake ships with a lot of find
modules – CMake scripts that allow you to
detect and use third-party packages on a variety
of platforms.

Last but not least, CMake also has tight integra-
tion with source code analysis tools that can
be run as part of a regular build, such as Clang-
Tidy, cpplint, and cppcheck. Having CMake
features and reporting for these tools is espe-
cially handy when using continuous integration
systems that automatically build your projects.

Now that Qt itself is being built with CMake, we
can expect CMake support within Qt to get bet-
ter than it already is. At the same time, CMake
is also automatically getting upstream patches
from the Qt Project. (An example is the addition
of CMake’s multi-config Ninja support feature.)
These changes serve the whole C++ ecosystem,
not just Qt, which is welcome.

People who build Qt from source should also

find things easier to manage. Since the Qt build
is driven by CMake exclusively now, there are
no extra configuration scripts that need to run
before invoking CMake. People who already
know CMake will mostly feel at home; it’s just
like any other big CMake project such as LLVM,
OpenCV, or any of the KDE frameworks. Of
course, if you’re already a CMake user, you
can expect Qt support and Qt integrations for
CMake to continue to improve.

Bad news?

The selection of build systems supported by
Qt is shrinking. Qbs has been deprecated as
of December 2019, and QMake won’t have any
future development except bug fixes. On the
bright side, having to maintain and extend three
separate build systems diluted the available
development talent pool that was addressing
Qt’s build tools, which left each tool needing
a bit of attention. Simplifying things down to
one main build system helps focus efforts on a
single tool. Not to mention, it will make it easier
for new Qt developers to pick up.

Another item to discuss is CMake syntax. CMake
has some operational quirks that make it a chal-
lenge to learn and its language is not always the
most pleasant or obvious. As an example of the
latter, let’s say you want to spawn parallel builds
with one more than the number of processor
cores of the build machine.

if(CPUS)

 math(EXPR CPUS "${CPUS} + 1")

 set(BLD_FLAGS "${BLD_FLAGS} -j${CPUS}")

endif()

Ugh – with a mix of strings and awkward syntax
just to do a simple increment, it doesn’t look too

KDAB | the Qt, OpenGL and C++ experts 3

CMake makes file manipulation easy: copying files to
a network drive, computing and comparing hashes, and
uploading packages to a cloud repository are examples.

pretty. It’s not very fun for coding up non-trivial
logic either, since CMake functions have to
use global variables in order to return a value
back to the caller. On the other hand, there is
so much functionality built into CMake that the
majority of build configurations are handled
without needing to resort to these features.
That’s true especially in CMake version 3.12 or
greater, since over all the years it has been in
development CMake has significantly improved
its capability as well as simplified the burden on
the user. (Watch Deniz Bahadir’s great side-
by-side comparison of traditional and modern
CMake for some specifics.)

While it might not win awards for orthogonal
structure and inherent beauty, the fact that
CMake can do cross-platform math and string
manipulation at all puts it far ahead of plain
makefiles. This can be a life saver to any build
master who’s been forced to resort to sed
scripts or custom utilities to trick make and
nmake into doing their bidding. Knowing that
you have the ability to delve into more complex
logic if need be gives you confidence that no
matter how complex the tasks needed by your
build process, you’ll be able to manage them.

While CMake is definitely Turing-complete, it
isn’t designed for heavy-duty calculation. You
won’t find it adhering to in-vogue programming
paradigms, and it won’t have the safety nets
you may have come to expect in modern pro-
gramming environments. (So if you find yourself
tempted to write full programs in it, you’re
probably doing something wrong.)

That said, it’s rare that you’ll need to create your
own build configurations from scratch anyway.
The benefit of being a widely used tool is that
most common build problems problems have

been already solved. It’s rather easy to find an
example CMakeList.txt structure that can be
modified to meet your needs.

Mo’ better

If you’re starting to get convinced that CMake
might be for you, here are a few more benefits
you can look forward to.

• Requirements are attached to the targets
and are automatically propagated as neces-
sary through the build, which includes any
requirements from third party libraries. This
makes creating a complex build much less
error-prone.

• CMake is aware of modern C++. If you need
particular compiler features in your code
or are using a particular language standard
(like C++11/14/17/20), you can determine
this when creating your build instead of
waiting for a failure at compile time.

• File manipulation is easy. If you’ve had trou-
bles bending QMake to your will at the end
of a build, you’ll welcome CMake’s compre-
hensive file command. Copying files to a
network drive, computing and comparing
hashes, generating header files, and up-
loading packages to a cloud repository are
similarly trivial.

Libraries under CMake

One of the biggest places where CMake is worth
its weight in gold is in incorporating external
libraries. A big reason is because as a library
builder, you can specify not only your library’s
build requirements but its usage requirements

KDAB | the Qt, OpenGL and C++ experts 4

As a library builder, you can specify your library’s usage
requirements so that users will automatically use the right
dependencies, linker options, or compiler features.

– everything that users of your library will need
to incorporate it into their builds. This can go
much further than just the include and library
paths: it can also include things like additional
dependencies, linker options, pre-processor
macros, necessary language standard (such as
C++14, C++17, or C++20), or required compiler
features (like u8 literals, ABI version, or code
generation switches).

Because CMake takes care of all the nitty gritty
details of incorporating a library, being able to
use someone else’s code in your project can be
as simple as this:

find_package(somecoollib)

target_link_libraries(main somecoollib)

Many common libraries that you might need
are easily detected using CMake’s find_package
command. The 3.16 release includes built-in
find module support for 162 commonly used
libraries: BZip, Boost, curl, gif, Glut, KDE,
Lua, MFC, OpenSSL, Qt, Threads, Wget and

many more. (The full list for your particular
cmake version can be generated with
cmake --help-module-list.) Even if your
favorite library isn’t there, there’s a pretty
decent chance that someone has already made
a CMake find module for it – Google it! As a
start, Awesome CMake has a great curated list
of CMake find modules covering several differ-
ent areas.

CMake basics

Since most of the Qt community will likely end
up embracing CMake sooner or later, you’ll
need to learn more about it at some point. Let’s
dive in a little deeper and look at a very simple
use case.

CMake’s top-level configuration file is always
called CMakeList.txt and usually resides
in the main source directory. There can be
CMakeList.txt files in any directory that’s
part of your build, which gives you the option
of structuring your project naturally, that is, by
using separate folders for the source code of
each library you’re building in your project. The
hello world CMake example in the Qt docu-
mentation has the fundamentals needed in a
Qt-friendly CMake setup. So, let’s start there by
dissecting hello world’s CMakeList.txt file and
explaining it section by section.

cmake_minimum_required(VERSION 3.10.0)➀

project(helloworld)➀

set(CMAKE_AUTOMOC ON)➀
set(CMAKE_AUTORCC ON)

set(CMAKE_AUTOUIC ON)

set(CMAKE_INCLUDE_CURRENT_DIR ON) ➀

CMake includes a GUI for configuration; very handy for building
debug and release candidates.

KDAB | the Qt, OpenGL and C++ experts 5

CMake has changed its default policies and syntax over the
years, so it’s good policy to set the expected CMake version
in your CMakeList.txt files to easily find mismatches.

find_package(Qt5 COMPONENTS Widgets

 REQUIRED)➀

add_executable(helloworld ➀
 mainwindow.ui

 mainwindow.cpp

 main.cpp

 resources.qrc

)

target_link_libraries(helloworld

 Qt5::Widgets)➀

Here’s the breakdown of each chunk.

➀ This sets the minimum required CMake level
to ensure you’re not using an older CMake
with different behaviors. CMake has changed
its default policies and added syntax over the
years, so this bit of insurance allows you to get
reasonable errors like “Wrong CMake version”
rather than obscure problems that might be
very difficult to troubleshoot. At the time of
writing, CMake 3.10 was the version shipped
by Ubuntu 18.04 LTS (long-term release of
Ubuntu), so we chose that as a safe bet to be
available on developer PCs. Your mileage may
vary of course.

➀ This sets the project name for the build.
If you want, you can also add a VERSION or
DESCRIPTION for your project. LANGUAGES is
another keyword that specifies the develop-
ment language your project supports, but since
the default is C and C++ we don’t bother to set it
explicitly.

➀ This is the magic that enables Qt-specific
behavior, namely automatically enabling MOC
processing for Qt C++ files, UIC for.ui files, and
RCC for.qrc files. Pretty much any Qt project will
need these target properties enabled.

➀ This ensures that you automatically add the
current source and build directories to the
include path.

➀ This pulls in your Qt dependencies, which in
the case of helloworld is pretty straightforward.
In addition to Widgets, you might need to add
any other Qt components like Core, GUI, XML,
SQL, and so on – just add them after Widgets.

➀ Here is the main event: specifying your output
target and input source files.

➀ This wraps it all up by linking in our needed Qt
library.

This is about as simple a CMakeList.txt file
as you’ll encounter, but it gives you an idea of
the basic structure. For something this basic,
you can see it’s really pretty easy to set up and
get going.

KDAB | the Qt, OpenGL and C++ experts 6

CMake is a rich tool for taking control of your entire
build process, no matter how specialized, complex, or
custom it is.

Summary

We’ve barely scratched the surface of what
CMake can do and how it works. There are
many CMake resources available such as online
introductions (here’s a good one) and refer-
ences (such as the book written by the original
creators). We also provide a CMake training that
provides a hands-on education on some of the
more popular topics:

• Qt-specific configuration and trouble-
shooting

• Cross-compiling and IDE integration

• Debugging techniques when things aren’t
working as intended

• Properly using private and public interfaces

• Finding and using packages that aren’t
pre-installed

• Understanding policies and how they change
CMake’s behavior

• Writing template files and header files, as
well as other useful file operations

• Using code generators and synthetic targets

CMake is a rich tool for taking control of your
entire build process, no matter how specialized,
complex, or custom it is. As a part of the Qt
toolkit, we welcome it becoming even more
indispensable to Qt builds and a more standard-
ized tool for the Qt community.

About the KDAB Group

The KDAB Group is the world’s leading software
consultancy for architecture, development and
design of Qt, C++ and OpenGL applications
across desktop, embedded and mobile
platforms. KDAB is the biggest independent
contributor to Qt and is the world’s first ISO
9001 certified Qt consulting and development
company. Our experts build run-times, mix
native and web technologies, solve hardware

stack performance issues and porting problems
for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive
experience in creating, debugging, profiling and
porting complex applications help developers
worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide
market leading, hands-on, training for Qt,
OpenGL and modern C++ in multiple languages.
Founded in 1999, KDAB has offices throughout
North America and Europe.

www.kdab.com

© 2022 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks belong to their respective owners.

