
KDAB | the Qt, OpenGL and C++ experts 1

We’re talking about learning curves and initial
configurations as well as the tasks of finding
experts or mentors, and sourcing compatible
components. And then, once you get off the
ground – then what? What if your tool can’t
stay relevant? A code base can create a huge
amount of inertia that will keep you in that tool’s
orbit, even when it clearly becomes obsolete.

So despite the number of choices, it’s still critical
to make the right choice. At KDAB, we think that
choice is Qt. We’ll discuss some of the reasons
we think Qt is a worthwhile time investment
and the circumstances in which Qt shines so
you can decide for yourself if it’s right for you.
We think you’ll agree with us that Qt is a great

choice so we’ve also got a few simple steps on
how to get started and where you can go for
additional resources.

Picking up a new tool

If you’re starting a new project, it may be the
right time to choose a new tool but the field
is crowded with options fighting for developer
mindshare. Here’s what we think are the most
common things you’ll want to consider:

• Ability to target as many platforms as
possible – Windows PCs, Mac OS, Linux, iOS
and Android, phones and tablets

There has never been a more bountiful time for developers than
there is right now. There are more languages, frameworks, and
libraries available than ever before, with many of them free or nearly
so. But every new tool comes at a cost.

Intro to Qt
Kevin Krammer Fe

br
ua

ry
 1

8

KDAB | the Qt, OpenGL and C++ experts 2

Qt is designed to provide a consistent GUI on all platforms,
running on all desktop, mobile and nearly all embedded
hardware.

• Support for embedded devices like i.Mx6,
Arduino, Raspberry Pi, Beaglebone, or Intel
Edson

• Ability to create an attractive modern user
interface

Seems simple enough, right? Let’s take a very
quick survey of the most popular cross-platform
candidates and see how well they meet these
criteria.

Java: This well-developed language has lots
of support for the Android platform and
desktops, but getting the JVM running on iOS
or embedded boards isn’t a ready-made easy
experience. Android has a standardized UI
framework; all other platforms can choose
among a number of options with various
support/speed/complexity trade-offs.
Intermittent garbage collection may create
pauses or stutters in the user interface. On
embedded platforms, accessing the hardware
requires JNI callbacks due to the JVM’s design.

HTML5: This is an exclusive tool for web
development and so there are many HTML5
frameworks available. Most are built for web
support only, although some (like Adobe
PhoneGap) target mobile development.
HTML5 is inherently cross-platform and visually
oriented, and provides excellent support
for styling and theming. However browser
incompatibilities (Chrome, Safari, IE, Firefox,
WebKit, etc) may make the app behave or
appear slightly differently on different platforms,
and per-platform browser testing is required.
Interpreted JavaScript and complex interactions
of HTML, CSS, and JavaScript result in large
memory footprints and may provide sluggish
performance. By-design, it’s unable to access
the underlying hardware and middleware
functionality for embedded applications.

C++: This is a powerful and mature language
able to target any modern desktop, mobile,
or embedded platform. C++ provides highly
optimized compilers with best runtime
performance and tightest memory control of all
commonly used languages. Modern additions
to the C++ language with C++11/14/17 have
improved type safety, capability, and ease of
use. It’s easy to access underlying hardware on
embedded systems. It’s stable and scalable for
large projects. It does not have a UI option built-
in, so one must be added.

Qt: This comprehensive open-community
framework is built on top of C++ and thus
inherits the benefits of C++ listed above but
also adds run-time types, dynamic properties,
and GUI-event handling. Designed to provide
a consistent GUI on all platforms, it runs on
all desktop, mobile and nearly all embedded
hardware. It offers simple declarative user
interface creation with QML. It comes complete
with many varieties of graphical objects,
including traditional desktop controls (Qt
Widgets), 3D graphics, and data visualization
charts/graphs. With it, developers can create
fluid animations on constrained hardware.

Complex animations are trivial to do with QML

KDAB | the Qt, OpenGL and C++ experts 3

Qt’s capability for developing high performance and scalable
software means with one tool you can develop anything from
simple desktop apps to large enterprise systems.

Choosing the best option

At KDAB, we consider Qt to be the overall best
option for most application development,
particularly whenever there is a UI requirement.
There are a number of reasons for this.

• Multi-platform: Developers can target
multiple platforms with the same code base

• Performance: Compact, high-performance
applications are the norm

• Innovation: Qt focuses on innovation rather
than infrastructure coding

• Licensing: Flexible licensing options
abound: Commercial, LGPL, and GPL

• Professional services, support, and
training: There’s plenty of all three

• Breadth and depth: Developers can find
nearly anything they need

Almost no matter what kind of development
you’re thinking about, you’ll be able to do it
with Qt. Being the strongest cross-platform
tool, Qt makes your applications available
to the largest number of potential users for
desktops, mobiles, and embedded devices.
And because of Qt’s capability for developing
high performance and scalable software, with
one tool you can develop anything from simple
desktop apps to large enterprise systems.

Addressing ease of use

Some say C++ has a reputation for being hard
to use but if so, wouldn’t that mean building
Qt apps is difficult? It’s certainly fair to say that
C++ is a tool for professionals and it’s got a long
history with lots of different ways to approach a
problem. The newest standards C++11, C++14,
and C++17 add functionality and simplify syntax
to give C++ improvements based on years of
developer feedback and many new features
from other modern languages. And with Qt,
developers can start with QtQuick and QML,
which provide most of what’s needed to build
a modern UI with the simplicity of JavaScript,
taking mere minutes to become productive. The
Qt Hello World section below gives you an idea
of how simple it is to get started.

Who else is using Qt?

Lots of companies are using Qt for all kinds
of applications: Amazon Lumberyard, Google
Earth, Spotify, and Wolfram Mathematica are
just a few examples. You might see some
movies over the weekend that have been
helped by Qt since Walt Disney and Lucasfilm
both use it. It’s also been used in way too many
embedded systems to count in all types of
specialized niches, although LG’s smart TVs,
Panasonic’s inflight systems, and Harman’s car
infotainment systems are among those that you
might encounter on a regular basis. If you pick
Qt, you’re in good company.

Qt is used for all types of aaplications including in-flight systems

KDAB | the Qt, OpenGL and C++ experts 4

Qt is a mature development environment with a number of
IDE plug-ins and utilities that expand programmer capability
and reduce code drudgery.

What’s in Qt?

A Qt installation has everything you need to get
started building apps right away, plus lots of
components you might need in the future:

• Qt Creator, qmake – powerful Qt-aware
IDE, build system

• Qt Quick – QML-based user interface
design

• Qt Widgets – user interface design based
on desktop controls

• Qt WebView, Qt Web Engine – web
containers

• Qt SQL – database integration layer

• Qt Network – network programming

• Qt Multimedia – audio, video, radio, and
camera

• Qt Purchasing, Qt Positioning, Qt NFC, Qt
Sensors, Qt Bluetooth – mobile platform-
specific features

• QtCharts, QtDataVisualization – charting
and visualization

• QtVirtualKeyboard – on-screen keyboard
for touch screens

• Qt Linguist – internationalization and
translation support

• Qt 3D – building 3D OpenGL apps

This list is just a sample and the available
options are always growing. Visit this online
resource for the latest: https://doc.qt.io/qt-5/
qtmodules.html.

Qt Tools

As a mature development environment, Qt has
a number IDE plug-ins and utilities that expand
the capability of the programmer and reduce
the drudgery in writing and debugging code:

• GammaRay – powerful debugging tool that
lets you examine and change Qt objects at
runtime

• Clazy – static analysis tool to identify where
your Qt code could benefit from best
practices

• valgrind – code correctness tool that finds
things like memory leaks, uninitialized data,
and thread race conditions

• Hotspot – graphical front-end for Linux
execution/performance profiler

• And more

Qt modules, add-ons, and tools meet nearly
every developer need for today’s modern
applications.

GammaRay can be used to inspect running programs

KDAB | the Qt, OpenGL and C++ experts 5

Getting your first Qt app up and running is so simple that it
barely needs instruction; dozens of included tutorials make
learning it a breeze.

Qt Hello World made dead simple

We’ve written down practically every click and
keystroke needed to create a simple “Hello
Qt” application, so you can see just how
straightforward it is.

1. Download and run Qt

• Download the Qt installer from https://
www.qt.io/download.

• Enter an installation folder or accept the
default location.

• Pick install options, although the default
installation choices should cover everything
you need. Click “Continue” to start the install.

• Installation takes anywhere from 15 to 45
minutes depending on your computer, so it
may be a good thing to get started before
lunch.

• Click “Launch Qt Creator” once the install
finishes to start up the IDE.

2. Create a Qt Hello World

• Start a new project by clicking the “+ New
Project” button.

• Pick the template as “Qt Quick Application
– Empty”, and click “Choose”.

• Name your project “HelloQt”, leaving the
rest of the fields with default values, and
click “Continue”.

• Leave the defaults for the next few screens
(build system, version, kit selection), and
click “Continue” on each screen.

• Skip version control settings and click
“Done”.

KDAB | the Qt, OpenGL and C++ experts 6

UX development in Qt can be completely done with graphical
design tools, simple scripting, C++ code, or a mix of all three
depending on your needs.

3. Add some code

• At this point, you’ve got a fully functional Qt
project with an empty main window. The
main user interface QML should look like the
above code.

For a bit of excitement, let’s add a “Hello Qt”
label before we run it.

• Add a text label. You can do so in two
ways. For a drag-and-drop method, click the
Design tab, and drag a Text control onto the
main.qml canvas, and type in “Hello Qt” into
the Text field.

However, we’re going to do it the “harder” way,
by adding it in code to show actually how easy
this is too. Click in the editor window and insert
the following text between title and the last
closing bracket:

Text {
 anchors.centerIn: parent
 text: “Hello Qt!”
}

Developers typically enjoy the ease of programming that comes with using Qt

KDAB | the Qt, OpenGL and C++ experts 7

Qt has several licenses available that make it possible
to create open source projects or proprietary customer
software, and anything in-between.

Your code should now look like the above. Once
it does, click Ctrl+S to save it.

• Run it by clicking the big green “Play” icon in
the left toolbar. Done!

If you were successful, it should look like this:

From here on in, you’ve got a working code
sample – you can try building it for mobile
platforms, adding more snazzy graphics, or
running one of the example projects. See the
Welcome page Examples button for pages upon
pages of interesting, colorful, and explanatory
examples that cover many aspects of Qt.

Licensing

Most developers don’t pay attention to licensing
requirements until they need to ship their
product. Unfortunately, that’s when it can
become a deal breaker. We don’t need to get
into the details here but thankfully Qt has
several licenses available that make it possible
to create open source projects or proprietary
customer software, and anything in-between.
Here’s a guide for any licensing questions:
http://qt.io/FAQ

KDAB | the Qt, OpenGL and C++ experts 8

There’s plenty of assisstance that comes in a Qt installation,
including documentation, tutorials, and hundreds of working
examples.

Where to go for more

A quick look on Google will turn up plenty of
resources but here are some of our favorites:

• Qt developer network: http://qt.io/

• Qt centre forum: http://www.qtcentre.org/

• Qt mailing lists: http://lists.qt-project.org/

• Training schedule: https://www.kdab.com/
schedule/

Some great Qt tools to get familiar with:

• GammaRay introduction: https://www.kdab.
com/what-is-gammaray/

• GammaRay : http://www.kdab.com/
gammaray/

• Clazy : http://www.kdab.com/clazy/

• Hotspot: http://www.kdab.com/hotspot-gui-
linux-perf-profiler/

Plus, don’t forget the assistance that comes in a
Qt installation:

• Documentation – getting started, using the
IDE, running examples, API reference, and
lots more (Qt Creator menu, Help | Index)

• Qt Tutorials – many hands-on videos for
different topics (Qt Creator Welcome page)

• Examples – hundreds of working example
projects (Qt Creator Welcome page, install
dir $QTDIR/examples)

About the KDAB Group

The KDAB Group is the world’s leading software
consultancy for architecture, development and
design of Qt, C++ and OpenGL applications
across desktop, embedded and mobile
platforms. KDAB is the biggest independent
contributor to Qt and is the world’s first ISO
9001 certified Qt consulting and development
company. Our experts build run-times, mix

native and web technologies, solve hardware
stack performance issues and porting problems
for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive
experience in creating, debugging, profiling and
porting complex applications help developers
worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide
market leading, hands-on, training for Qt,
OpenGL and modern C++ in multiple languages.

www.kdab.com

© 2018 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks belong to their respective owners.

