
Nathan Collins | Senior Software Engineer, KDAB

Designing Your First
Embedded Linux Device 2

Choosing Your Hardware

2 KDAB — the Qt, OpenGL and C++ experts

The most difficult decision you’ll make when creating your first
embedded Linux device has nothing to do with software; it’s about
the hardware. While it is possible to do a software upgrade mid-
development without massive disruption and waste, attempts to
make such changes in hardware development come at a much
higher cost. So, you need to make some important decisions
upfront about which CPU, board, and peripherals you want to use
in your embedded Linux device.

This whitepaper looks at the numerous planning considerations
that go into choosing your hardware to help you expediate your
development process.

Should you use a custom or commercially available

board?

The heart of your design – and the biggest cost and risk – is the
main microprocessor system-on-chip (SoC). Until you have some
experience with a particular SoC, you really want to leverage the
experience of a vendor who builds them into pre-existing system-
on-module (SoM). While that might cost a bit more per board, it
lets your hardware and software teams get critical experience with
a particular chipset before you start laying things out yourself.
Once your company has hardware and software expertise behind
a particular SoC, you could consider a bespoke board of your own.

Which silicon vendor is right for you?

When looking at chips you can use for your project, there are
a huge number of vendors available. The biggest choice of
hardware however is going to be your main central processing
unit (CPU) and that’s where we’ll focus next.

Because so many chips are based on ARM designs these days, it
makes it a bit easier to compare prices and features more directly.
But while the CPU may be the heart of your project, what about

KDAB — the Qt, OpenGL and C++ experts 3

the surrounding board hardware? Many silicon vendors provide
evaluation boards to help assess their chips like AMD, Intel, Nvidia,
NXP, and Renesas. You might think it’s best to go to the source
since they know their hardware better than anyone else – and
that is often true. Eval boards are often fully loaded, letting you
explore the capabilities of the chip. That gives you a chance to
explore your options before narrowing them down to the final
hardware configuration.

You might even consider using a silicon vendor’s board as part of
your product. Whether this is a practical approach comes down
to three main factors: cost, support, and longevity. Supplying eval
boards as a product isn’t a silicon vendor’s mainline business.
That means board costs are likely higher as they’re only intended
for very limited distributions needed for evaluation purposes.
How well does the silicon vendor support the board – both with
engineering advice as well as board support packages (BSP) –
can also be a big factor. Even if you only anticipate very small
production runs for your first product, the lifespan of vendor-
supplied boards – or perhaps more importantly, how frequently
they revise and make changes and how controlled that process is
– can be a big factor in whether you can use them as the basis of
your hardware platform.

Ask your sales representative if you’re considering using their
board for production. They don’t want disappointed customers
or support issues, so they’re almost always perfectly honest
about whether they think their board products can be used for

From experience: Silicon vendor support can be critical
Most companies start their hardware choices by examining a huge matrix of hardware features. In those assessments, how well

silicon vendors can support their customer is often overlooked. We worked with one customer who selected a chip that was a

perfect fit for their application, and, for ease and convenience, they also used the vendor’s Linux BSP. Unfortunately, the vendor

was inconsistent in OS updates and generally poor in open-source management. That left the customer stuck with an older

Linux 2.6 kernel even though they required some known patches. While the product was in demand throughout the pandemic,

the lack of silicon vendor support to fix critical problems lead to a bad experience for the company – and their customers.

4 KDAB — the Qt, OpenGL and C++ experts

production purposes. And as is often the case, if they prefer that
you don’t buy eval boards for production, they can steer you to the
right distributor that can help you with a longer-term replacement.

What about picking a board vendor?

There are many companies that specialize in taking chips and
creating fully capable SoM boards or embedded single-board
computers around them. A few notable companies here are
Advantech, Arrow, Avnet, Kontron, Toradex, TQ-Group, and
Variscite – and there are many more. How do you pick among
these many options?

This can be difficult because there are so many factors to look at
for each board and each board vendor. Look at this list of options
and see which of them applies to you.

 • Eval versus product. In addition to evaluation boards, board
vendors are more likely than silicon vendors to offer single-
board computers that can form the basis for a company’s
product. Look in the board’s specifications to see if “end
product” is one of the expected uses. These boards often offer
more engineering support and have longer product lifespans
that are helpful if you incorporate them into your product.
Board vendors may also offer design files for the schematics,
layout, and bill of materials – as well as customization services
– to allow you to transition more easily to creating your own
customized board.

 • CPU support. Vendors have many variants of a particular
CPU line with differing maximum clock speeds, cores, co-
processors, and graphics processing units (GPUs). This is one
board component where it doesn’t pay to go for the smallest
option. Due to shortening schedules and feature creep,
software engineers quickly eat up any spare processing power.
Check the specific CPU offered on each board to make sure it’s
appropriately sized for your needs but if in doubt, go bigger.

KDAB — the Qt, OpenGL and C++ experts 5

 • Hardware features. Probably the most obvious features
to look for are the size and speed of on-board RAM and
Flash storage. However, many other hardware components
may be important to include on your board either during
development or for final production, like support for HDMI
(driving development or production screens), USB (debugging
and connection to other hardware), SD cards (easily swapping
in/out firmware builds), and other application-specialized buses
or sensors.

 • Supplied OS. Does the vendor provide their own customized
version of Linux? Do they offer a Linux distribution like Ubuntu?
Do they have a Linux deployment system like Yocto? Do they
offer other OSes in addition to Linux? All of these questions let
you evaluate whether the right Linux or Linux-like OS is already
on the board or whether you need to dedicate engineering
resources into getting it there and keeping your build updated.
(We’ll come back to whether you need to use Linux or a more
specialized OS later.) Unless you’ve got Linux experts on staff,
it’s probably best to go with a vendor pre-loaded option when
possible. It cuts down on your development time when your
board vendor has the supporting software ready to go.

 • Software options. Does your board vendor offer any special
software options that can help either streamline development
or help build and/or support the product? These might be
things like containerized development or over-the-air updates
allowing you to keep your in-field products bug-free. If you
require software subsystems like these, getting them from the
vendor can save you a ton of time building and maintaining
them yourself.

 • Custom engineering. Does the board vendor offer custom
engineering services for items you can’t yet handle in-house –
like tweaks to a device driver or changes in the board startup?
You might not know at the beginning of the project if you need
custom engineering. Consider things that use the hardware in

6 KDAB — the Qt, OpenGL and C++ experts

an out-of-the-ordinary way, like fully using a chip’s low-power
modes, employing special techniques to achieve fast boot
times, or relying on seldom-used driver features. These may
be candidates for custom engineering. It’s at least good to
understand the scope of your vendor’s capabilities for custom
software support, even if you can eventually handle them
yourself or outsource them to another software specialist.

 • Board longevity and support. How long are a vendor’s boards
supported? Some vendors let you keep using a product in
limited runs even once they’ve removed it from the price list.
Others drop it after a set warning period. There’s also the
question of software support for deprecated boards. How
long will obsolete boards be supported by their software
team? Many of these questions are most relevant when you’re
putting software into long-lasting consumer goods that may
require infrequent updates. If you’re updating already deployed
hardware that’s already at a customer location – either via OTA,
customer-driven refresh, or on-site technicians – how a vendor
manages board support over the long-term is a concern.

 • Product roadmap. Knowing how easy it is to move your
product to a higher or lower capability platform can be
important to some companies. Similarly, knowing whether
a vendor stays on top of creating new hardware/software
combinations is good to know. Although most companies don’t
publish their product roadmaps online, you may be able to
get one through your sales representative, or at least make
some educated guesses based on what is on the web with the
current product lineup.

 • Cost. The last consideration on our list is cost. While it’s the
easiest attribute to measure and one that’s critical for your
profitability, it’s also the most misleading metric. The cost of
a board does not incorporate your company’s costs for any
of the above items, most of which are very hard to quantify.
Hardware has a piece price assigned to it, while any resulting

KDAB — the Qt, OpenGL and C++ experts 7

software development time from those decisions can only be
estimated. And those estimates demand careful consideration
of the requirements, potential architectural considerations, and
skilled software practitioners.

Software development costs and timelines can often dominate
product development; that’s especially true in the embedded
space where volumes are often smaller. So, picking a slightly
more expensive chip that has big software benefits can offer
huge benefits in the long run.

Picking the screen

Not all products have screens. Hosting your user interface on a
built-in web server or controlling your device through a smart
phone application is the best option for many devices. However, if
your product needs a built-in screen, then you need to consider a
few things to help you decide which screen makes the most sense.

Driving the screen: fancy or not?

The biggest question to answer is regarding the demands of your
user interface (UI). If you plan on “fancy” graphics – a term that
encompasses things like consistent animations, high frame rates,
sophisticated rendering, 3D graphics, large screen sizes or “retina-
quality” density – you are increasing the number of pixels that
need to be regularly shifted out to the display. A modern fast CPU
can handle these things but at the expense of bandwidth that
could be used for other tasks.

If you do have “fancy” graphics, you should seriously consider
getting a CPU that has a companion GPU that can offload the
CPU from most of the rendering duties – even a simple bitblitter
can help. In addition to the GPU, there is sometimes memory set
aside for the display. This is faster than accessing external RAM,
so it can be a limiting factor on how big or colorful of a display
your product can support. Display technology isn’t getting simpler,

8 KDAB — the Qt, OpenGL and C++ experts

and user interface demands are constantly increasing. If the GPU
option on your CPU family isn’t a big cost bump, it’s worth it as a
bit of insurance to ensure your product can handle more complex
and visually stunning UI designs.

Companies often have in mind a touch UI that looks and acts like
a smartphone with an interface that can dazzle their customers.
Yet many embedded graphics systems available are comparable
to that on a 10- or 15-year-old smartphone. Even with the
hardware acceleration a GPU provides, these chips with older
GPUs and limited memory bandwidth are far too underpowered
to deliver to these expectations. If you have a high-resolution
display, even a simple UI needs to move a lot of pixels to support
it. We’ve worked with many companies who have struggled and
failed to improve their sluggish UI – even deep software expertise,
drastic UI simplification, and intense engineering efforts can only
deliver incremental improvement if the hardware isn’t up to the task.

To 3D or not 3D, that is the question

Most user interfaces don’t really need 3D graphics since they’re
exclusively 2D or whatever 3D elements they use in the UI are
just pre-rendered images. But devices such as manufacturing
equipment, 3D printers, medical equipment, or CNC machines can
really benefit by showing the user 3D visualizations. If you’re going
to use 3D in your embedded application, it’s especially important
to pick hardware with sufficient power.

A 3D scene may require a large number of triangles (250,000 is
not unusual). 3D graphics also come hand-in-hand with larger
screen sizes and refresh rates of 30 frames per second or more.
These things make intense demands on the GPU, CPU, and
memory pipeline, and many embedded processors are not truly
up to the task. You may want to try several potential eval boards
with a mock-up of your application to see what hardware works
the best. Or get advice from consultants who have some prior
experience in 3D rendering on different platforms.

KDAB — the Qt, OpenGL and C++ experts 9

Finding the right screen

Many physical characteristics of a screen are very application
dependent. For example, things like refresh rate, temperature
range, contrast, and visibility (ability to be seen in full sun or
complete darkness) vary depending on if your product is an
industrial controller used for round-the-clock factory shifts or a
handheld portable measuring tool used in full sun.

Portable devices also need to worry about power consumption.
Backlight isn’t the only energy drain, and there are a lot of display
technologies out there. Best to know the potential issues with the
technology you’re choosing. While OLED screens may look bright
and not require a backlight, they’re only minimally better than a
standard TFT LCD screen for power, and they often have shorter
lifespans that might not be appropriate. ePaper displays use
minimal current but carry a host of limitations on color, resolution,
refresh speed, and readability.

Finding the right GUI framework

You’re nearly always better to go with an existing graphics
framework rather than try to reinvent your own, and so many
choices exist from capable and heavy to lightweight but limited.
Frameworks that support multiple OSes and languages for typical
embedded development are those like Qt, wxWidgets, Slint, Dear
ImGui, or Crank Storyboard, while frameworks that target mobile
and web such as React, Flutter/Dart, and Angular (and many more)
can be options. If you’re trying to make a cross-platform UI that
works on your device as well as within a remote web-browser, you
might also consider an HTML framework (of which there are many).

The choice of framework depends a lot on the type of graphics
you want to display (as we mentioned in the “fancy” section) as
well as the programming language environment.

Do you need to switch between applications? If so, you’ll want a
windowing system that innately handles this, so you don’t have to

10 KDAB — the Qt, OpenGL and C++ experts

kludge something together. Do you need multiple screen types (a
premium and an entry level for example) or different sizes as part
of your product line? If the latter, you’ll need two different layouts
for the two different screen sizes – potentially with some controls
hidden or accessed through additional dialogs.

Whatever type of screen technology you use, make sure it has
reasonable bindings for your chosen programming language. By
“reasonable,” we mean that either the API for the framework is
native (the toolkit should be in the same language you’ll be using)
or it is well-tested and complete for your language of choice. Hav-
ing a framework that supports the key features you need is great
– until you find out that the APIs for those features are missing in
your chosen language.

Summary

Building your first Embedded Linux device is not easy. Hopefully
this guide gives you a good feel for the many things you need
to consider. Our engineers have deep expertise in all aspects of
embedded product development so please don’t be shy to reach out
if you have any questions or need help at any point in the process.

KDAB — the Qt, OpenGL and C++ experts 11

This is the second whitepaper in a series of four that covers planning
considerations and lessons learned in building embedded devices
with Linux. Each whitepaper addresses a specific portion of the
development lifecycle, so you can easily focus on the guide most
relevant to your current stage of development. If you don’t find the
advice you need in this whitepaper, check out our first, third, and/or
fourth whitepaper in the series.

View the four parts of this whitepaper online:
www.kdab.com/publications/embeddedlinux/

12 KDAB — the Qt, OpenGL and C++ experts

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for
architecture, development and design of Qt, C++ and OpenGL
applications across desktop, embedded and mobile platforms.
KDAB is the biggest independent contributor to Qt and is the
world’s first ISO 9001 certified Qt consulting and development
company. Our experts build run-times, mix native and web
technologies, solve hardware stack performance issues and
porting problems for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex applications
help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market leading,
hands-on, training for Qt, OpenGL and modern C++ in multiple
languages.

www.kdab.com

© 2020 the KDAB Group. KDAB is a registered trademark of the
KDAB Group. All other trademarks belong to their respective
owners.

