
Nathan Collins | Senior Software Engineer, KDAB

Designing Your First
Embedded Linux Device 1

Framing the Development Process

2 KDAB — the Qt, OpenGL and C++ experts

If your company is building its first embedded Linux device, you’re
going from a relatively easy-to-understand product environment
to one that’s software-dependent with thousands of technical
decisions to make. Nobody wants the expensive mistake of a
failed product, but without previous experience, how do you go
about creating an embedded system that is not only successful
with customers but also a solid foundation for future innovation?

This is the first module in a whitepaper series on designing your
first embedded device; it covers the beginning and ending of the
product development process. At the onset of a new project are
a handful of critical choices that shape and constrain every other
decision down the line. Similar “up front” decisions around your
expected customer experience influence your ability to update
or change your product after it’s already in the customer’s hands.
These are bookends if you will; decisions that frame the entire
development process.

At the beginning: avoiding bad decisions

The hardest product decisions to work around are poor
hardware choices. If you design a chip into your product that
lacks in processing power, memory, flash disk, configurability, or
sufficient I/O capabilities, you’re consigning your software team
to extremely costly engineering to work around these limitations.
Ill-chosen chips can lead to fewer features, slower performance,
and intermittent failures, creating a significantly less satisfactory
customer experience. You’ll also certainly create a less solid code
base due to the kludges needed to sleight-of-hand your way out
of jams. The worst scenario is that these issues are intractable
enough that the hardware needs to be designed out, resulting in
months of lost time and mounting costs.

The fundamental takeaway is you must pick hardware that meets
your requirements both now and in the future.

KDAB — the Qt, OpenGL and C++ experts 3

It’s easy to mistake something as “technically possible” by the
processor specs, but that isn’t achievable when considering a
holistic view of the product, constrained developer deadlines, or
ongoing maintenance considerations.

When the BOM becomes a bomb

Most bad hardware decisions are the result of pursuing hardware
cost savings at the project onset without the full realization of
that choice’s potential impact to software development timelines
and resource increases. Purchasing and bill-of-materials (BOM)
concerns can steer you into short-sighted savings unless you
ensure that software experts are sitting at the table and can
validate product choices.

Supporting specialized hardware

Things like physical buttons, industry-specific hardware, or
specialized sensors all need to be connected to the system
whether directly through GPIO, A/D, or UART inputs, or a bus like
I2C, USB, or CAN. Make sure you have the required hardware on
your board and, if it needs a gateway, you have enough spare
ports to manage everything you need.

If you’re reading and writing to hardware through a GPIO, this
requires a dedicated pin – a very limited resource. The number
of GPIOs are often changeable through configuration registers

From experience: Select your hardware to grow
Picking a “right-sized” CPU and board for your project can be a limiting long-term choice. We worked with one customer who

made agricultural machine controls, and their original hardware choice worked acceptably for the first product. But over

time, they added many new features such as more complicated applications, 3D visualizations, and camera inputs. After every

new feature, they had to spend huge amounts of time hunting for small performance gains so they could squeeze in the new

functionality or add new code to the flash drive. The amount of time their engineering team spent on these issues reduced their

ability to innovate and get products to market. And even with all the performance gains squeezed out of the system, they still

had to live with many unfortunate limitations such as a slow camera frame rate.

4 KDAB — the Qt, OpenGL and C++ experts

(consult your CPU’s reference manual) but only at the cost of
other possible features. Figure out how many GPIOs you need
and see if that configuration is possible with your board while
accommodating your other hardware requirements.

Are there drivers that the board vendor supplies for talking to
your devices, or do you need to write them yourself? If the drivers
aren’t available out of the box, there may be source that can be
easily adapted. Even so, writing kernel drivers is a specific skill that
demands more rigor with different APIs and tools. You’ll save lots
of time and heartache if you can find professionals who specialize
in this sort of thing.

At the end: shipping the product

You’re not done when you’re done coding; you still have to have
a systematic, reliable way to get your software into customer’s
hands. Putting software loads onto boards before you’ve shipped
them isn’t too difficult, since you can rely on specialized tools and
the same software environments you’ve been using throughout
development. Updating products after they’re in the customer’s
hands is fundamentally more difficult – and it’s expected. Because
there are many more considerations for software updates, we’ll
focus on this area for the rest of this section.

Deploying images

How are you deploying development images? Whether user-
initiated or automatic, most products today allow in-field product

From experience: Extra peripherals can come in handy
You might be looking at boards that have extra hardware you don’t expect to use, like a Bluetooth chip or USB port. In our

experience, many customers have been able to use those features for future customer and development features, even when

they weren’t part of the original design. You might not need that USB port for the final product, but it might come in very

handy when your developers use it for an extra network or WiFi dongle or memory stick during development. If your board has

Bluetooth support but your product doesn’t, having the capability as an option lets you add a Bluetooth antenna later when

your customer wants to pair their phone to your device.

KDAB — the Qt, OpenGL and C++ experts 5

updates. User-initiated updates require less work for the
developer (and more for the user) than automatic ones. But they
may be a first step – your website can provide firmware download
images, and you can supply some on-board scripts to detect
and install those images from an on-device upload, USB stick, or
desktop PC.

Be careful in any type of update procedure that corrupt images or
process interruptions don’t brick the unit. Using dual A/B firmware
loads can help ensure you always have at least one part of the
unit booting properly. There are also commercial and open-
source solutions for remotely updating software: in other words,
over-the-air (OTA) updates. These solutions are quite a bit more
robust in handling failures and interruptions.

Should you auto-update?

You’ll want to carefully consider if auto-updating is right for
your device because while it ensures your customer always
has the latest features and security patches, enforcing periodic
downtime to handle the updates can have a big impact on how
your customer is able to use the device. In all cases, you want
it a controllable feature so that the customer doesn’t get stuck
in a download or updating situation when they least desire it.
Any embedded device that is expected to be continually in use
or that has stringent security requirements should either only
use manual updates or at the very least have the auto-updating
feature default be off.

Updating without breaking

Regardless of how you get new software to your device, your
software team must be very careful that user data isn’t destroyed
(from such things as file format changes) and that configuration
files are maintained. Develop a clear way to version data files
and automatically migrate them forward (or auto-migrate files
bidirectionally if you decide to allow older firmware downloads).
For your configuration files, use a simple text format like JSON

6 KDAB — the Qt, OpenGL and C++ experts

where you can supply default values to accommodate missing
data fields – and perhaps even allow the user to manually fix
configuration files if they get broken or if they need to coordinate
internal deployments of your products.

Preparing your image files

Every release needs a unique version number – but you’re already
generating that as part of your build, right? You need to compress
your release images to save space in both downloading and in
temporary space on the device. You also need to wrap all release
files with a CRC – or perhaps a digital signature – so they can be
verified and not easily tampered with. And you want to maintain
an in-house library of all releases so that you’ve got easy access
to the binary files when you need them for testing. Of course,
you also need every customer-facing release tagged within your
source control system for easy replication of any historical code
snapshot when necessary.

And while most of this discussion has been around firmware
images, if you’re using Docker or another container-like system,
you still need the same basics: how does your customer get the
files, how do they get verified, and how are they reliably put into
service?

Quality assurance

Of course, your developers are testing bits and pieces as they go.
But who is testing the final product? Is that testing going to be
in-house or outsourced? And – although nobody ever wants to
admit it – how will you handle bug reporting when the customers
have been left to test the hardest parts? Can you recover your
customer from deep failures with a factory reset and/or default
firmware? And how can you guarantee that the factory reset will
be complete – including resetting any non-obvious but persistent
hardware or file system states? Knowing the answers for how your
testing, support, and customer interaction should work together is
important before you start shipping.

KDAB — the Qt, OpenGL and C++ experts 7

Similarly, you want to think through your software update
process. Are you going to be fixing bugs and security issues
on a regular cadence, when customers prompt you for fixes,
or when discussed as part of your engineering roundtable
meetings? Are there some customers who need specialized “on-
demand” branches for critical bug fixes, because they’re your
biggest concerns or they require it contractually via their support
agreement?

Summary

Building your first Embedded Linux device is not easy. Hopefully
this guide gives you a good feel for the many things you need
to consider. Our engineers have deep expertise in all aspects of
embedded product development so please don’t be shy to reach
out if you have any questions or need help at any point in the
process.

This is the first whitepaper in a series of four that covers planning
considerations and lessons learned in building embedded devices
with Linux. Each whitepaper addresses a specific portion of the
development lifecycle, so you can easily focus on the guide most
relevant to your current stage of development. If you don’t find the
advice you need in this whitepaper, check out our second, third, and/
or fourth whitepaper in the series.

View the four parts of this whitepaper online:
www.kdab.com/publications/embeddedlinux/

8 KDAB — the Qt, OpenGL and C++ experts

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for
architecture, development and design of Qt, C++ and OpenGL
applications across desktop, embedded and mobile platforms.
KDAB is the biggest independent contributor to Qt and is the
world’s first ISO 9001 certified Qt consulting and development
company. Our experts build run-times, mix native and web
technologies, solve hardware stack performance issues and
porting problems for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex applications
help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market leading,
hands-on, training for Qt, OpenGL and modern C++ in multiple
languages.

www.kdab.com

© 2020 the KDAB Group. KDAB is a registered trademark of the
KDAB Group. All other trademarks belong to their respective
owners.

