Modern Shader-based OpenGL Techniques
Qt Developer Days, Berlin 2012

Presented by Sean Harmer

Produced by Klarälvdalens Datakonsult AB

Material based on Qt 5.0, created on November 9, 2012
Module: Modern Shader-based OpenGL Techniques

- Introduction
- Simple Lighting
- Instanced Rendering
- Post-Processing
Module: Modern Shader-based OpenGL Techniques

- Introduction
 - Simple Lighting
 - Instanced Rendering
 - Post-Processing
Examples framework

Window Subclass of QWindow. Used to create a QOpenGLContext and a Scene. Drives the scene update. Handles window resize events, key events and mouse events.

AbstractScene A very simple interface we can subclass to implement our scenes/examples. Contains a pointer to the QOpenGLContext for easy access. Subclass this when making your own examples.

NB. Other helpful classes will be introduced as we go along.

Demo opengl/shader-fundamentals/ex_basic_usage
Introduction

Modern Shader-based OpenGL Techniques
Module: Modern Shader-based OpenGL Techniques

- Introduction
- Simple Lighting
- Instanced Rendering
- Post-Processing
Phong Lighting

3 Components
- Ambient - same everywhere
- Diffuse - light scattered uniformly
- Specular - sharp highlights

Also known as ADS lighting model

Reflectivity coefficients for A, D, and S

Adjustable "shininess" for flexibility

Requires 4 vectors:
- Normal vector at surface point, \(\hat{n} \)
- Direction from surface point to light source, \(\hat{s} \)
- Viewing vector from eye position to surface point, \(\hat{v} \)
- Reflection vector of \(\hat{s} \) about \(\hat{n} \), \(\hat{r} \)
Diffuse Lighting cont'd.

\[L = L_d K_d \hat{s} \cdot \hat{n} \]
Phong Lighting cont'd.

\[I = L_s K_s (\hat{r} \cdot \hat{v})^f \]
Bringing it all together:

\[I = I_a + I_d + I_s \]

\[= LK_a + LK_d(\hat{s} \cdot \hat{n}) + LK_d(\hat{r} \cdot \hat{v})^n \]

\[= L \left(\begin{array}{c} K_a \\ Ambient \\ \hline K_d(\hat{s} \cdot \hat{n}) \\ Diffuse \\ \hline K_d(\hat{r} \cdot \hat{v})^f \\ Specular \end{array} \right) \]
Simple Toon/Cell Shading

- Ambient & diffuse
- No specular
- Large areas of constant color
- Sharp transitions
- Non-photorealistic
- Simulates cartoon artist technique
- Demonstrates flexibility of shaders

Demo openGL/lighting/ex_toon
• Combine with any lighting
• Visualize mesh
• Debugging
• CAD applications
• Geometry shader
• Only 1 pass!
• No z-fighting!

Demo opengl/rendering/ex_wireframe
Module: Modern Shader-based OpenGL Techniques

- Introduction
- Simple Lighting
- Instanced Rendering
- Post-Processing
• Use base mesh (VBOs)
• Instance data in extra VBO
• Set attribute divisor
• Issue one drawing call!
• GPU does the hard work
• Minimises CPU overhead
• Shaders can access per-instance data
• Grass, trees, crowds, armies...

Demo opengl/rendering/ex_instanced_geometry
Instanced Rendering cont'd.

- **VBO #1**
 - Position 1
 - Position 2
 - Position 3
 - Position n

- **VBO #2**
 - Normal 1
 - Normal 2
 - Normal 3
 - Normal n

- **VBO #3**
 - TexCoord 1
 - TexCoord 2
 - TexCoord 3
 - TexCoord n

- **VBO #4 - Divisor = 1**
 - Data 1
 - Data 2
 - Data 3
 - Data m
• Use base mesh (VBOs)
• Instance data in extra VBO
• Set attribute divisor
• Customise from instance data
 • Position offset
 • Bias and scale y coords
 • Color

Demo opengl/rendering/ex_instanced_histogram
Module: Modern Shader-based OpenGL Techniques

- Introduction
- Simple Lighting
- Instanced Rendering
- Post-Processing
Two-pass Rendering

Post-Processing

Modern Shader-based OpenGL Techniques
Edge Detection

- Uses 2 rendering passes
- Render to Texture
- Render using texture
- Second pass applies filter

Demo opengl/rendering/ex_edge_detection
Gaussian Blur

- Uses 3 rendering passes
- More efficient than 2!
- Render to Texture
- Render using texture twice
 - Apply vertical blur
 - Apply horizontal blur
- Optimise with hardware filtering

Demo opengl/rendering/ex_gaussian_blur
Multi-pass Rendering

Post-Processing

Modern Shader-based OpenGL Techniques
Television Effect

- Uses 2 rendering passes
- Render to Texture
- Render using texture
- Modifies original
 - Simulate poor zoom
 - Adjust levels/contrast
 - Color tint
 - Interference lines
 - Vignette
 - Flickering

Demo opengl/rendering/ex_television
Chaining Effects

- Uses 5 draw calls
- Uses 4 rendering passes
- Render to Texture
- Render using texture
- Ping/pong 2 FBOs
 - Render scenes
 - Vertical blur pass
 - Horizontal blur pass
 - Television effect
- Order matters!

Demo opengl/rendering/ex_multiple_effects

Post-Processing

Modern Shader-based OpenGL Techniques