
Qt 3D Node Editor and Shader
Generator
Paul Lemire – paul.lemire@kdab.com

A quick recap about shaders

What are shaders?
• A program that runs on the GPU
• Different types of shaders

– Vertex transforms points in space→ transforms points in space
– Fragment compute pixels’ colors→ transforms points in space
– Geometry, Compute, Tessellation …

• Written in different programming languages depending on the
Graphics API in use

– OpenGL uses a language called GLSL
– DirectX uses a language called HLSL

3

What are shaders?

What does a shader look like?

#version 150

in vec3 vertexPosition;

uniform mat4 mvp;

void main()

{

 gl_Position = mvp * vec4(vertexPosition, 1.0);

}

#version 150 core

out vec4 fragColor;

void main()

{

 fragColor = vec4(1.0, 0.0, 0.0, 1.0);

}

Vertex Shader Fragment Shader

In Practice

Using shaders in Qt 3D
Material {
 effect: Effect {
 techniques: [
 Technique {
 // Specify the Graphics API and Version we target
 graphicsApiFilter {
 api: GraphicsApiFilter.OpenGL
 profile: GraphicsApiFilter.CoreProfile
 majorVersion: 4; minorVersion: 4
 }
 renderPasses: RenderPass {
 shaderProgram: ShaderProgram {
 vertexShaderCode: loadSource("qrc:/shaders/phong.vert")
 fragmentShaderCode: loadSource("qrc:/shaders/phong.frag")
 }
 }
 }
]
 }
} 7

Shaders with OpenGL
● Multiple desktop versions (GL 2.*, GL 3.*, GL 4.*)
● and embedded versions (ES 2, ES 3.*)

– Versions don’t all support the same features or use the same exact syntax
– If you want to support multiple GL versions, you need to provide shader code

for each version
● OpenGL expects shaders to be provided as GLSL code*
● The OpenGL Driver takes care of compiling the GLSL code

to a program that can be executed by the GPU

8

Shaders with Vulkan
● Vulkan expects SPIR-V shaders
● SPIR-V is a bytecode
● The glslang tool convert shaders written in various

languages (C++, GLSL, OpenCL) to SPIR-V
– Shader compilation is expected to be a step that takes place at application

build time rather than runtime

9

Handling multiple APIs/versions
● Two options:

– Provide a shader for each version we target
● More assets to handle
● Selection is made at runtime based on which rendering backend was selected
● Makes it hard to test all possible versions

– Abstract the shader code into a set of inputs, outputs and operations
● Provide translation rules for input, output, operations
● Convert shader code description into actual shader code

10

Abstracting shader code with nodes

The Node Editor
● Builds a graph of nodes

– Nodes can either be
● An input
● An output
● An operation/function

● Exports .graph files which contains the graph structure +
node prototypes

● Part of Kuesa / available as QtCreator plugin

12

Prototypes and translations
● The prototype is the definition of a specific node
● Translations define how a node has to be converted
● The prototype specifies:

– Whether the node is an input, output or operation
– If node is an operation, the number of inputs/outputs
– Translations for each Graphics API that needs to be supported
– Header declaration (for uniforms, includes ...)

13

14

Simple Prototypes

"add": {
 "inputs": ["first", "second"],
 "outputs": ["sum"],
 "parameters": {
 "type": { "type": "QShaderLanguage::VariableType", "value": "QShaderLanguage::Vec3"}
 },
 "rules": [
 {
 "format": { "api": "OpenGLES", "major": 2,"minor": 0},
 "substitution": "highp $type $sum = $first + $second;"
 },
 {
 "format": { "api": "OpenGLCoreProfile", "major": 3, "minor": 0},
 "substitution": "$type $sum = $first + $second;"
 }
]
}

15

More complex Prototypes

"customFunction": {
 "inputs": ["first", "second"],
 "outputs": ["result"],
 "parameters": {
 "type": { "type": "QShaderLanguage::VariableType", "value": "QShaderLanguage::Vec3"}
 },
 "rules": [
 {
 "format": { "api": "OpenGLCoreProfile", "major": 3,"minor": 0 },
 "headerSnippets": [
 "#pragma include :shaders/es2/myCustomFunction.inc.frag"
],
 "substitution": "vec3 $result = myCustomFunction($first, $second);"
 }
]
}

Layers

● Not to be confused with Qt 3D Layers
● Allows to create different views of a given graph

● To handle different type of inputs

Loading graphs with Qt 3D

QShaderProgramBuilder
● Recreates shader code by traversing the graph
● Selects translations that match the rendering backend
● Relies on QShaderGenerator (private API of QtGui)
● Does some optimizations:

– Cache results of operations which are referenced more than once
– Inlines operations otherwise

18

Using shaders in Qt 3D
Material {
 effect: Effect {
 techniques: [
 Technique {
 GraphicsApiFilter { ... }
 renderPasses: RenderPass {
 shaderProgram: ShaderProgram {
 id: prog
 ShaderProgramBuilder {
 shaderProgram: prog
 fragmentShaderGraph:"qrc:/shaders/graphs/graph.frag.json"
 enabledLayers: []
 }
 ShaderProgramBuilder {
 shaderProgram: prog
 fragmentShaderGraph:"qrc:/shaders/graphs/graph.vert.json"
 }
 }
 }
 }
]
 }
} 19

What’s next?

Extending the use of graphs to more than shaders

● FrameGraph
● LogicalDevice
● Particle Systems
● ...

Generate Shader Bytecode

● Would allow to create SpirV byte code
● Required for Vulkan / RHI

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

