

QNX Software Systems Limited 1

Building Functional Safety into
Complex Software Systems, Part I
Chris Hobbs, Kernel Developer
QNX Software Systems
chobbs@qnx.com

Abstract
Traditionally, proofs that software systems meet standards for functional safety have
depended on exhaustive testing. This method is adequate for relatively simple,
deterministic systems, with single-threaded, run-to-completion processes. It is
inadequate, however, for today’s multi-threaded systems. The complexity of these
systems precludes their being treated as deterministic systems in practice.

In Part I of this whitepaper series we discuss the limits of testing of complex software
systems, and some factors that should be weighed when deciding how to build
complex software systems that must meet functional safety standards. In Part II, we
propose how a combination of procedural rigor, statistical testing, and design
verification can be used to increase confidence in complex software systems. In
subsequent papers in this series, we will explore specific strategies for building and
validating functional safety in complex software systems.

Figure 1. A chainsaw is a safety-related system. Its primary system cuts wood; its secondary,
functional safety system is designed to prevent injury and damage.

Primary system (cut wood)
Engine, bar, chain, throttle, etc.

O! switch, safety throttle,
centrifugal clutch, chain
brake, hand guards, etc. Fails to cut wood

Failure

Unintended
injury or damage

Functional safety system
(prevent injury or damage)

Protective clothing,
system maintenance,
operator training, etc.

Failure

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 2

Safety-Related Systems
In the context of the present discussion, we consider that a safety-related system is a
system that could cause unacceptable or unforeseen injury or damage to the health
of people, or damage to property or the environment, but that operates in a way that
prevents it from doing so. By “unacceptable or unforeseen injury or damage” we
mean any injury or damage that:

• the system is not expressly designed to cause — the injury a chainsaw causes to
a tree is acceptable; injury to the person operating the saw is unacceptable

• has not been previously identified and deemed acceptable — some oil finding its
way into adjacent waters is foreseen and considered acceptable practice during
undersea oil extraction; deaths of rig workers, fires, and uncontrolled spills like
the 2010 Deepwater Horizon oil spill is unacceptable

In the context of our discussion of functional safety, we can decompose a system
into two parts, the primary system and the functional safety system. Figure 1 above
presents an abstraction of the primary and functional safety systems for a chainsaw.

Primary system
The primary system performs the primary task; in the case of a chainsaw, it cuts
through wood. The components of this system are whatever is required for the
chainsaw to cut through wood: the engine, fuel tank, On/Off switch, bar, chain, etc.

Functional safety system
The functional safety system is the system that ensures that during its operation the
safety-related system causes no unintended injury or harm; in the case of the
chainsaw, it ensures that the saw doesn’t cut or otherwise harm the operator or
bystanders.

This system includes, not just components that are physically part of the system: the
off switch, safety throttle, chain guard, etc., but also components that are not
physically part of the system we normally call a chainsaw: protective boots, gloves
and clothing, goggles, etc., and less concrete but nevertheless very real components
such as system maintenance, operator training, operating instructions and rules
(Don’t drink and saw. Don’t try to stop the chain with your hand!), and so on.

If its primary system fails, the chainsaw doesn’t cut wood. If its secondary, functional
safety system fails, the chainsaw may or may not cut wood, but it might also cut or
otherwise injure the operator, or other persons, animals or property.

Note that the primary system and the functional safety system may share
components. For example, in our chainsaw the On/Off switch is shared by both
systems. We need it to start the saw so we can use it to cut wood; and we need it so
we can instantly switch off the saw in an emergency. For precisely this reason,
On/Off switches for chainsaws are designed to be easily flipped to the Off position
while wearing heavy work gloves.

Functional Safety
Functional safety is the capacity of a safety-related system to function as it is
expected to function. It is the continuous operation of a safety-related system
performing its primary tasks while ensuring that persons, property and the
environment are free from unacceptable risk or harm.

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 3

Functional Safety in Software
Software has been employed in safety-related systems for generations. It has become
ubiquitous in contexts ranging from oil refineries to medical devices to automobiles to
spacecraft. In every one of these implementations the software systems—like the
larger systems in which they operate—have undergone rigorous examination to
ensure that they meet the required levels of safety integrity1 required for certification
to standards such as IEC 61508 (electrical/electronic/programmable), IEC 62304
(medical), ISO 26262 (automotive), and the CENELEC EN 5012x series (railway
transportation).

Systems are demonstrated to be functionally safe when they have been evaluated by
an accredited organization, and been accorded Safety Integrity Level (SIL)
certification.

Safety integrity through
testing
Until relatively recently, the
rigorous examination of
software systems to obtain
certification relied principally
on process evaluation and
testing. All possible states and
state transitions were
identified, and the system was
exhaustively tested to
demonstrate that at each state
and state transition the
software behaved as required.

This approach to
demonstrating safety integrity
and obtaining system
certification rests on two
premises. First, it assumes that, unlike hardware, software does not wear out. If a
software system can once be shown to work correctly in all states and state
transitions, it will always work correctly in all states and state transitions. Second, it
also assumes that the software system is deterministic; that is, that the system is
finite and that all its states and state transitions can be identified and, hence, tested
for conformity with required behavior.

Software does wear out
No, we are not suggesting that software gradually drops instructions until it becomes
threadbare like an old coat, or holes appear where perfectly valid code used to be. It
does not wear out with use. Unfortunately, however, in practice software does wear
out in the sense that it no longer performs adequately or correctly what it was
originally built to do. Without any changes being made to the code, the software may
cease to behave as required, just as, without any express changes, a coat may cease
to keep its wearer warm in winter because, for instance, it has changed context. Its

1 EN 50126, for example, defines safety integrity as “the likelihood of a system satisfactorily

performing the required safety functions under all the stated conditions within a stated period
of time”.

Software is not always to blame
Software has been blamed for many costly and
highly publicized failures. Among the best known
of these failures are the Ariane 5 launch debacle
of 1996 (see below), and the Mars Global Orbiter
failure in 2007.

Software is not always to blame, however. For
instance, when US Airways Flight 1549 lost power
in both its engines in January 2009, the flight crew
was able to ditch in the Hudson River because the
flight control software continued to function
correctly and allowed them to control the plane.

Hardware (the engines) failed, but the 155 people
on the Airbus survived. They owe their lives to the
crew’s cool heads and decisive actions—and to a
well-designed flight control system.

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 4

owner bought and wore it in, say, London, but has since moved—and taken the coat
along—to Helsinki.

Software can wear out or, perhaps more
accurately, cease to perform adequately
or correctly, when it changes context.
Code that works perfectly on one
processor might not continue to do so
when we move it to another processor.
For example, every processor has a
long and unique list of errata, and these
can affect the way software runs.
Software may run correctly on one
processor because of a hidden fault
with that processor, then fail on a
processor without that fault. The
instances of software working properly
for years then failing are legion, though
few are as dramatic, costly or famous as
the Ariane 5 incident. (See “What we
learned from Ariane 5” on this page.)

The End of Deterministic
Systems
More significant than the assumption
that software does not wear out is the
assumption that a safety-related
software system is deterministic, that
every state and state transition in the
system can be known and tested. This
assumption was largely valid for
software systems in the past, and
remains valid for many safety-related
systems in use today.In practice, if we
rely on exhaustive testing to prove that a
system meets functional safety
requirements, the system must be
simple. For a software system, this
requirement often means that the
system is limited to single-threaded,
run-to-completion processes. In such a
system, rate monotonic scheduling, or
something similar may be needed to
prove that all processes meet their
deadlines, and, if internal states can be
pre-set, testing can demonstrate
conclusively that processes do meet
their deadlines.

Today, these sorts of systems are being increasingly relegated to very specific tasks,
such as controlling anti-lock brakes, and are being (or should be) replaced by more
complex systems with multi-threaded applications. The Engineering Safety
Management Yellow Book 3, Application Note 2: Software and EN 50128, published
by Railway Safety on behalf of the UK railway industry even states that “if a device

What we learned from Ariane 5
Thirty-seven seconds after it was
launched on June 4 1996, the European
Space Agency’s (ESA) new Ariane 5
rocket rained back to earth in pieces.
This failure was rather costly: some US
$370 million, and a stinging
embarrassment for ESA.

It has become one of the best known
instances of software that had been
exhaustively tested and even field proven
— in this case, more accurately, sky-
proven — ceasing to function correctly
though it had not been changed. What
had changed was the context in which
the software ran.

The acceleration of the Ariane 5 was
greater than that of its predecessor, the
Ariane 4, for which the Ariane 5’s Inertial
Reference System (SRI, Système de
Référence Inertiel) had originally been
designed and tested. In the new context,
though the Ariane SRI itself had not
changed, in practice it had worn out; it
was no longer able to function as
required.

Fortunately, the Ariane 5 incident did not
cause any fatalities. Its importance for
ensuring functional safety in software
systems is far greater than its immediate
cost. It provided a dramatic
demonstration of the limitations of state-
based testing as a means for ensuring
functional safety.

This demonstration may in the long run
lead indirectly to savings (even perhaps
to the ESA) far greater than the US $370
million that it originally cost the ESA,
because it led to increased research into
other means of proving that a software
system meets its functional safety
requirements.

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 5

has few enough internal stored states that it is practical to cover them all in testing, it
may be better to regard it as hardware.”2

Stranded in an elevator
Figures 2, 3 and 4 below3 are state diagrams for an elevator and its door in a three
storey building. They illustrate just how difficult it is to validate even a simple system
through testing.

The building contains a single elevator. On each of the building’s three floors there is
a door so that people can step in and out of the elevator. A central elevator controller
sends signals to the cage to cause it to move up or down.

To keep our example simple, we have our elevator controller ignore requests from
the building occupants to come to their floor: if this were a real building the call
button by the elevator might, as we’ve all suspected at some time, light up to make
us feel good, but would have no effect on when the elevator arrived. Also to keep
things simple, our controller doesn’t check if the elevator doors on each floor are
open or closed.

The elevator
Figure 2 shows a state diagram for our elevator. The
elevator can receive one of two possible instructions
from its controller: go down (?down), or go up
(?up).

If the elevator is at the top floor, an ?up instruction
to go up does not change its location; similarly, if it is
at the bottom floor, a ?down instruction has no
effect. This system is simple enough to be
exhaustively tested and shown to meet its
requirements.

The doors
Figure 3 shows a state diagram for our elevator
doors. This system is even simpler than the system
that controls the elevator’s movements. The doors
can either open (?open) or close (?close). An
instruction to change to their present state, for
example, ?close when the doors are closed, has
no effect.

The elevator controller
Figure 4 shows a state diagram for the elevator
controller, which sends instructions to the elevator

and to the elevator doors. This system is still a very simple system, but it requires
more careful examination than do the elevator system and the door system. In fact, it
contains a fault that may not be immediately apparent.

This system is simple enough that we can uncover the fault through testing—as long
as we test the right state transitions; or through design verification—as long as we
ask the right questions. A potential condition we might wish to test is that no door
should open or remain open unless the elevator is at the floor with that door. This

2 Application Note 2: Software and EN 50128. London: Railway Safety, 2003. p. 3.
3 Adapted from B. Berard et al, Systems and Software Verification. Berlin: Springer, 2001.

Figure 2. A simple system. The
elevator can receive
instructions to go up or down to
the next floor.

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 6

condition could, in principle, be tested, but it would be tested only if we have thought
of the dangerous condition. If we do not think of this condition, we cannot test for it,
and someone just might find an open door and fall down the elevator shaft.

However, even if we design the
system so that doors do not open
without the elevator at the
apporiate floor, the system fails to
ensure that someone does not get
stuck in the elevator. If, for
example, we get on the elevator
on the bottom floor, the controller
can send us on an endless
journey from floor to floor. The
elevator doors never need to
open. To save ourselves, we
would have to find a way to get
someone outside the system to either inject an !open instruction when the elevator
reaches a floor and before the controller issues another !up or !down instruction, or
to force the controller to issue an !open instruction after n ups and downs, in much
the same way that telecommunications networks drop packets that cannot be
delivered after n hops.

This simple scenario underlines
one of the key challenges we
face when we attempt to verify
even very simple systems.
Testing and design validation
can only reveal the presence of
faults we have anticipated.
Except in the most trivial
systems, such as the elevator
door system shown in Figures 2
to 4, they cannot confirm the
absence of faults. They can only
confirm that what we test
behaves in the specified way,
and that the system does
correctly what we asked about
the system. If we want to
confirm that the elevator doors
will not open without the elevator
being present, we can test the
system and verify its design to
ensure that, indeed, it protects
people from falling down the
elevator shaft.

However, if we forget that people
can also become trapped in
elevators and we do not test for
this problem, or do not ask if
this could happen to someone

taking our elevator when we verify the design, this rather serious fault can slip
unnoticed into our system. We forgot to ask if all elevator rides must end. Of course,

Figure 3. A simple system. The elevator doors can
receive instructions to either open or close.

Figure 4. A simple system with a fault. There is no
guarantee that the elevator door will ever open.

?close(i)

?open(i)

?open(i)

?close(i)

OpenClosed

2Wait 2

1Wait 1

0Wait 0

!close(2)

!close(0)

!close(1)

!open(1)

!open(0)

!open(2)

!up

!down

!up

!down

2 > 0

0 > 2

!up

!down

!up

!down

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 7

as a system increases in complexity, so will the number of these sorts of faults. As
our elevator system shows, even in a very simple system it is easy to miss functional
safety requirements that in hindsight are glaringly obvious. We cannot insist too
much on the importance of a well-selected set of functional safety requirements.

Testing of complex systems
In theory, a system with multi-threaded processes is deterministic. All its states and
state transitions can—again, theoretically—be identified. However, these states and
state transitions are so numerous that in practice they cannot be counted, to say
nothing of testing them. The number of possible states, state transitions and their
effects on the system is so great that, in practice, the system might as well be
infinite.

Further, even if these states, state transitions and consequences could be
enumerated, their nature and complexity make it impossible to test many transitions,
because it would still be impossible to force the starting points from which these
transitions move.

Multi-threaded kitchen drawers
To illustrate how a complex system becomes impossible to test exhaustively in
practice, we can assume that we somehow got out of our elevator and have gone
shopping for furniture. In the furniture store we come across a device which will In
this particular case, the device opens and closes a kitchen cutlery drawer
repeatedly, recording and displaying the number of times it has performed this
movement, proving that the drawer design and manufacturing are of sufficiently well
designed and manufactured to last x years.

For example, at the rate of one test every two seconds, in two weeks the test would
be repeated 302,400 times. On the assumption that in a real kitchen the drawer
would be opened and closed an average of seven times a day, this test would
demonstrate that the drawer would last 118 years in a real kitchen—somewhat
longer than most modern kitchens go without some sort of makeover.serve well to
illustrate our point. The device is used to demonstrate furniture quality by repeating
actions that imitate how the furniture would actually be used: “use cases” in the
language of software testing.

If, however, the proof must demonstrate that a complex of, say, 1000 drawers is
designed to last 118 years, that there are rules stipulating that drawers may or may
not be opened depending on what adjacent drawers are doing, that the drawers may
decide to move around in the complex based on this adjacency in order to be able to
open or close, that if it’s Tuesday blue drawers must open only half way, and red
drawers must not close, and, finally, that the operation of some or all drawers
depends on the precise location and state of sets of between 14 and 23 drawers,
then the proof starts looking more like testing a multi-threaded software system.

The number of possible states and state transitions quickly grows to the point that
the drawers may often seem to have minds of their own, and, in practice, it quickly
becomes impossible to provide proof that the complex of drawers will indeed
function without failure for 118 years, or even a single day. If we remember how easy
it was to let an error slip into our very simple elevator controller design because we
did not ask the right question (Can people become trapped in the elevator?), we
must accept that our slightly more complex system with 1000 drawers will include
faults.

Significantly, the Ariane 5’s SRI was not tested adequately because, among other
reasons, with one of the two proposed methods of testing “accurate simulation … is

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 8

quite expensive”, while with the other proposed method “simulation of failure modes
is not possible with real equipment, but only with a model”, and testing with a model
was complex and insufficiently accurate4. (See also “What we learned from Ariane 5”
on page 4.)

The system was not tested for the specific fault that would cause the failure, because
no one asked the right question, and because the system had not been soaked
under live conditions. Either of these verification procedures would have revealed the
fault. We should remember, though, that every complex software system is like the
Ariane 5’s SRI: it contains faults no one can imagine before they cause an error or
failure, and even for potential faults that have been identified, the systems are
incompletely tested.

Functional Safety with SOUP
If we accept, first, that safety-related systems will increasingly require more
interaction and computing power than can be provided by single-threaded, run-to-
completion systems, and, second, that complex, multi-threaded software systems
cannot be validated for functional safety through exhaustive testing, then it becomes
essential to map out new, more comprehensive strategies for verifying that a system
is functionally safe. In short, projects that develop functionally safe systems must
have more in their verification plans than simply “TEST” and “TEST AGAIN”.

A witch’s brew of dubious ingredients
As with all software design, no strategy for designing a safety-related system is
perfect, and the choice of which strategy to use depends very much on the
particulars of each project. These design choices include various combinations of:

• software built in-house from scratch

• SOUP (Software Of Uncertain Provenance/Pedigree)

• software with functional safety certification

A comprehensive discussion of the merits of each approach and their various
possible combinations would fill a few library shelves, and cannot be entertained
here. A few comments may be helpful, however.

Software built from scratch
This approach often appears to be the obvious solution. If the entire system is
designed and build from scratch, then the designer and builder control both process
and product from start to finish. There are no unknown or dubious components, and
control of the process as well as the final product facilitates certification, which
usually includes the design and development process as well as an examination of
the finished product.

If, however, we remember that “software failure rates do in fact follow the
conventional bathtub curve”5, the do-it-yourself approach to ensuring that a system
meets its functional safety requirements begins to looks less attractive.

Experience has shown us that no matter how well-designed, built and verified, a
system has a higher failure rate when it is newest. Everyone is familiar with the high

4 J. L. Lions et al., Ariane 501 Inquiry Board Report. Paris: ESA, 1996, p. 8-9.
5 Chris Hobbs, “Protecting Applications Against Heisenbugs”. QNX Software Systems, 2010.

www.qnx.com.

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 9

failure rate of software when it is first exposed to the field and different usage
patterns uncover latent faults. Hence, a system that incorporates components that
have stood the test of time may in fact be a better choice than a new system built
from scratch — even if some of these are of unknown provenance or pedigree.

To this we must add that for software built from scratch there is clearly no data on
which to build a proven-in-use argument: the software has no history; and that
building the software from scratch top-to-bottom—or, more accurately, bottom-to-
top—is a gargantuan task beyond the capabilities and schedules of most projects.

SOUP and clear SOUP
Software vendors often make the distinction between COTS (Commercial, off-the-
shelf) software, and SOUP. COTS software, they say, has a vendor standing behind
it, a company that has staked its reputation—and its financial future—on this
software functioning as specified, while SOUP has no one standing behind it.

This position is valid in the same way
that it may be preferable to buy
medication from a reputable pharmacy
than from some web site that uses
spam to advertise. However, in the
context of functional safety, it is mostly
irrelevant since for us most COTS is
probably SOUP because processes,
code, fault histories, and everything else
required for certification may not be
available to anyone outside the selling
organization.

A more useful distinction is between
SOUP and clear SOUP. A COTS
system, such as a Microsoft Windows
operating system, is opaque SOUP
because, though it may have a well-
documented development process, its
source code and failure history are not
available for public scrutiny.

In contrast, open source projects such
as Apache and Linux are clear SOUP
because they make their source code
and fault histories freely available.
Thanks to years of active service these
projects’ characteristics are well-known.
Like in-house software, they can be
scrutinized with code symbolic
execution and path coverage analysis,
and their long (and freely available)
histories make findings from statistical
analysis particularly relevant.

Despite these attractive characteristics, open source may not be the best solution,
however. The difficulty with using open source in functionally safe systems is that
open source development is neither clearly defined nor well-documented. We can’t
know how it was coded or verified. It takes a leap of faith to assume that we know as
much as we need to know about them. Add to this that SOUP or COTS may include

An inherent limitation of testing
No matter how simple the system,
testing can never prove the absence of
errors.

Testing can only reveal the presence of
errors. If we ask the right question
(devise the appropriate test) about our
elevator controller, testing will show that
it can trap people in the elevator. Testing
cannot confirm that the controller has no
other errors, however, because finding
each error requires that we devise the
test for that error. If we cannot image the
error, we cannot test it.

Further, testing requires that we be able
to generate starting states from which we
can examine specific behaviors,
something which we may not be able to
do in a complex system.

Finally, testing typically verifies reliability:
that responses are correct for each use
case tested. Verification of availability:
that responses are delivered at all, is only
done in passing. If schedules permit, a
system may be subjected to stress tests,
or left to “soak”, but this step is often
pushed out to after the system has been
deployed on the field.

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 10

more functionality than is needed, which leaves dead code in the system, a practice
that functional safety standards, such as IEC 61508, expressly discourage.

Of course, if a COTS vendor makes available its product’s source code and fault
history, it clarifies its SOUP. Some vendors choose to go one better and provide, not
just clear SOUP, but a clear recipe for the SOUP. That is, they release to their
customers the detailed processes they use to build their software, along with its
complete development history — essentially an informal audit trail that we can use to
help substantiate claims about the software’s reliability and availability. Ideally, we
should work with clear SOUP made with a clear recipe that has a long and well-
documented history of success in the field.

Software with functional safety certification
Functional safety certification evaluates the safety integrity level (SIL) of an entire
system; when sub-systems and components are evaluated, their dependability is
assessed in the context of the system in which they occur. The U.S. Food and Drug
Administration, for instance, certifies medical devices as a whole — and quite rightly
so. If, for example, a manufacturer changes the battery it uses in its pacemakers,
someone relying on this device would likely prefer to know that it has been certified
with its new power source, even if nothing else had changed.

That systems must be evaluated in their entirety to acquire functional safety
certification in no way diminishes the value of using certified components in these
systems. Quite the contrary. Using a component, such as an operating system kernel
whose functional safety integrity level has been certified by a reputable agency, can
contribute significantly to achieving certification for the entire system. There are four
key technical benefits associated with using components with functional safety
integrity level certifications: quality, process, documentation, and vendor knowledge.

Quality
Certification of the component
confirms its quality. Its claims
to dependability have been
independently evaluated and
found to be true.

Process
In order to be certified the
component will have to have been developed and evaluated in conformance with
clearly defined, comprehensive processes.

Documentation
The certified component will include user documentation detailing how to use the
component in a system requiring functional safety certification.

Vendor knowledge
The vendor of the certified component has seen the component through the
certification process from project inception to completion, and in many cases is more
than willing to assist customers in obtaining certification of their systems.

This assistance can make the difference that determines a project’s success or
failure—especially for organizations that have little or no experience with functional
safety certification.

QNX Neutrino RTOS Safe Kernel
The QNX Neutrino® RTOS Safe Kernel has been
certified to IEC 61508 Safety Integrity Level 3
(SIL 3). It provides a certified platform on which
application developers can implement systems
that must meet the most stringent functional
safety requirements.

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 11

These technical benefits translate directly into important business benefits, chiefly a
shorter and less expensive certification process, and hence faster time to market,
reduced development costs, and increased profits.

Conclusion
We have seen that the functional safety of today’s multi-threaded complex software
systems cannot be validated by traditional, state-based testing alone. Though these
systems are deterministic in theory, due to the number of possible states and state
transitions they can present, they might as well be infinite.

It is, nonetheless, not only necessary, but possible to build functionally safe complex
software systems. In Part II of this paper we will explore some strategies we can use
to design and build these systems, and the methods we can use to verify that they
meet their functional safety requirements: procedural rigor, statistical testing, and
design verification.

References
Agency Risk Management Procedural Requirements (NP4 8000.4A). NASA, 16 Dec.

2008.

Berard, B. et al. Systems and Software Verification. Berlin: Springer, 2001.

Bouissoe, Marc, and Fabrice Martin and Alain Ourghanlian. (1999) “Assessment of a
Safety-Critical System Including Software: A Bayesian Belief Network for Evidence
Sources”. Proceedings of the Annual Reliability and Maintainability Symposium.

EN 50126 1999: Railway applications—The specification and demonstration of
reliability, availability, maintainability and safety (incorporating corrigenda May
2006 and May 2010).

ERA Technology Ltd. (2009) “Risk Modelling using Bayesian Networks”.
http://www.era.co.uk

Havelund, Klaus et al. “Formal Analysis of a Space Craft Controller Using SPIN”.
Moffet Field: NASA Ames Research Center, n.d.

Helminen, Atte. (2001) Reliability estimation of safety-critical software-based systems
using Bayesian networks. Helsinki: Säteilyturvakeskus (Finnish Radiation and
Nuclear Safety Authority). http://www.stuk.fi/julkaisut/tr/stuk-yto-tr178.pdf

Hobbs, Chris. “Fault Tree Analysis with Bayesian Belief Networks for Safety-Critical
Software”. QNX Software Systems, 2009.

_____. “Protecting Applications Against Heisenbugs”. QNX Software Systems, 2010.

Jackson, Daniel, ed. Software for Dependable Systems: Sufficient Evidence?
Washington: National Acadamies Press, 2007.

Lions, J. L. et al. Ariane 501 Inquiry Board Report. Paris: ESA, 1996.

Littlewood, Bev and Peter Popov, and Lorenzo Strigini. (2001) “Modeling software
design diversity—a review”. ACM Comput. Surv., 33(2):177-208.

QNX® Neutrino® RTOS Safe Kernel 1.0: Safety Manual: QMS0054 1.0. QNX Software
Systems, 2010. www.qnx.com.

Railway Safety: Engineering Safety Management Yellow Book 3: Application Note 2:
Software and EN 50128. Issue 1.0. London: Railway Safety, 2003.

Reason, James. Human Error. Cambridge: Cambridge UP, 1990.

Building Functional Safety into Complex Software Systems, Part I

QNX Software Systems Limited 12

About QNX Software Systems
QNX Software Systems Limited, a subsidiary of Research In Motion Limited (RIM)
(NASDAQ:RIMM; TSX:RIM), is a leading vendor of operating systems, development tools,
and professional services for connected embedded systems. Global leaders such as Audi,
Cisco, General Electric, Lockheed Martin, and Siemens depend on QNX technology for
vehicle infotainment units, network routers, medical devices, industrial automation systems,
security and defense systems, and other mission- or life-critical applications. Founded in
1980, QNX Software Systems Limited is headquartered in Ottawa, Canada; its products are
distributed in more than 100 countries worldwide. Visit www.qnx.com
and facebook.com/QNXSoftwareSystems, and follow @QNX_News on Twitter. For more
information on the company's automotive work, visit qnxauto.blogspot.com and
follow @QNX_Auto.

www.qnx.com
© 2011 QNX Software Systems Limited. QNX, QNX CAR, Momentics, Neutrino, Aviage are
trademarks of QNX Software Systems Limited, which are registered trademarks and/or used
in certain jurisdictions. All other trademarks belong to their respective owners.
302190 MC411.85

