
Testing Your Code for Security
Issues With Automated Fuzzing

Albert Astals Cid

albert.astals.cid@kdab.com

 2

Who is this?
Working with Qt since 2003

● KDE
● Canonical/Ubuntu Phone

● KDAB

● Contributed around 400
patches for Qt itself

NOT A SECURITY EXPERT

Security issues

 4

Which security are we talking about?
The issues found by this kind of tools are generally
related to wrong memory uses like uninitialized variables,
using already freed memory or buffer overruns.

These errors typically mean that the application will
behave incorrectly either by doing unexpected things or
simply crashing.

People with enough experience are able to turn [some of]
these memory related crashes into code execution
exploits.

 5

Which tools do we have?
● The Operating System

If your application uses memory incorrectly it will probably
crash, making sure that doesn’t happen is a good first
step ;)

● Valgrind

Valgrind will help us find memory errors. Its main problem is
the huge penalty paid regarding resource use

● ASAN/MSAN/UBSAN

The compiler sanitizers instrument the code at compile
time. They have a functionality very similar to Valgrind but
the resource usage is much smaller (though using them is
from harder to way harder)

Fuzzing & oss-fuzz

 7

What is fuzzing?
Fuzzing is a technique based in sending random/garbage
values to a given application or function.

This way it tests the robustness of that code.

The most basic way is just calling a given binary with all
possible inputs and make sure it doesn’t explode.
echo "a" | pdfinfo -

echo "b" | pdfinfo -

echo "c" | pdfinfo -

…

echo "aa" | pdfinfo -

…

 8

What to fuzz?

The most critical software to fuzz is the one exposed to
the world.

Web-browser/e-mail client

Image reader

Your file-format parser

Your network service end-point

 9

What is oss-fuzz?
oss-fuzz is a fuzzing engine developed by Google

[well the engine itself is called libFuzzer ;)].

It links with the code and is coverage based meaning it is
able to learn and maximize coverage with the least number
of “random” inputs.

void theFunction(int x) {

 if (x > 50) {

 } else {

 }

}

 10

What is oss-fuzz? (II)
oss-fuzz is a set of docker images (with the last version
of clang, libFuzzer, etc) and small test applications that
exercise free software projects.

At this point there are around 240 projects

https://github.com/google/oss-fuzz/tree/master/projects

https://github.com/google/oss-fuzz/tree/master/projects

 11

What is oss-fuzz? (III)
oss-fuzz is a SAAS around libFuzzEngine +
ASAN/MSAN/UBSAN + bug tracker

Strict policy on the bugs that are found:
– Mantainers are notified when issues are found
– Issue is made public:

● 90 days after being found
or

● 30 days after being fixed

All the software to build the SAAS is free software in case
you want to run one yourself

 12

What is oss-fuzz? (IV)

Example

 14

Simple fuzzer
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size)

{

 int argc = 0;

 QCoreApplication a(argc, nullptr);

 QImageIOHandler *handler = new TGAHandler();

 QImage i;

 QBuffer b;

 b.setData((const char *)data, size);

 b.open(QIODevice::ReadOnly);

 handler->setDevice(&b);

 handler->canRead();

 handler->read(&i);

 delete handler;

 return 0;

}

 15

Simple Dockerfile
FROM gcr.io/oss-fuzz-base/base-builder

MAINTAINER your_email

RUN apt-get install --yes cmake

RUN git clone --depth 1 https://github.com/madler/zlib.git

RUN git clone --depth 1 https://github.com/nih-at/libzip.git

RUN git clone --depth 1 git://anongit.kde.org/extra-cmake-modules

RUN git clone --depth 1 --branch=5.15 git://code.qt.io/qt/qtbase.git

RUN git clone --depth 1 git://anongit.kde.org/kimageformats

COPY build.sh $SRC

COPY kimgio_fuzzer.cc $SRC

WORKDIR kimageformats

 16

Simple build.sh
cd $SRC/zlib

./configure –static && make install -j$(nproc)

cd $SRC/libzip

cmake . -DBUILD_SHARED_LIBS=OFF && make install -j$(nproc)

cd $SRC/extra-cmake-modules

cmake . && make install -j$(nproc)

[build Qt]

cd $SRC/kimageformats

cmake . -DBUILD_SHARED_LIBS=OFF && make install -j$(nproc)

$CXX $CXXFLAGS -fPIC -std=c++11 $SRC/kimgio_fuzzer.cc -o $OUT/kimgio_tga_fuzzer ...

find . -name "*.tga" | zip -q $OUT/kimgio_tga_fuzzer_seed_corpus.zip -@

 17

Maybe not so simple build.sh
cd $SRC

cd qtbase

fix memory sanitizer build (3 sed lines right now)

sed -i -e "s/flags/other_flags/g"
mkspecs/linux-clang-libc++/qmake.conf

./configure --glib=no --libpng=qt -opensource -confirm-license -
static -no-opengl -no-icu -platform linux-clang-libc++ -v

cd src

../bin/qmake -o Makefile src.pro

make sub-gui -j$(nproc)

 18

How does it look like?

 19

How does it look like? (II)
==1==ERROR: AddressSanitizer: SEGV on unknown address
0x000000000000 (pc 0x00000054f266 bp 0x7ffef040f0d0 sp
0x7ffef040f000 T0)

==1==The signal is caused by a READ memory access.

==1==Hint: address points to the zero page.SCARINESS: 10 (null-
deref)

 #0 0x54f265 in (anonymous namespace)::LoadPSD(QDataStream&,
(anonymous namespace)::PSDHeader const&, QImage&)
/src/kimageformats/src/imageformats/psd.cpp:206:51

 #1 0x54e90e in PSDHandler::read(QImage*)
/src/kimageformats/src/imageformats/psd.cpp:255:10

 #2 0x53a18f in LLVMFuzzerTestOneInput
/src/kimgio_fuzzer.cc:60:12

What about Qt?

 21

Qt and oss-fuzz
Robert Löhning from The Qt Company has been working
on it.

What we have so far:
● Fuzzing Qt with libFuzzer locally
● Configure switch for adding coverage info (since 5.13)
● Some fuzzers in qtbase, qtdeclarative, qtsvg
● Test files which can be used for initializing fuzzer
● Registered Qt project for oss-fuzz (but unused)

Questions?

	Diapositiva 1
	Diapositiva 2
	Section slide
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22

