(

Optimizing Rendering of
Qt Quick 2 Applications

Qt World Summit 2019, Berlin

Giuseppe D'Angelo

fe

>

giuseppe.dangelo@kdab.com

The Qt, OpenGL and C++ experts

About me

* Senior Software Engineer,
KDAB

* Developer & Trainer

* Qt developer since ~2000

— Qt contributor

* Ask me about Qt Core, Qt
Gui, Qt Quick, ...

- And about Modern C++, 3D
graphics

2 The Qt, OpenGL and C++ experts

Agenda

The Qt, OpenGL and C++ experts

AKDAB
Performance in Qt Quick: many aspects '

* C++ performance
- CPU, I/0, scalability, lock contention...

* JavaScript performance

— QML compiler, incubation, bindings, animators...

* Rendering performance

— Asset conditioning, offline processing...

— Runtime performance when using OpenGL You are here

4 The Qt, OpenGL and C++ experts

Performance in rendering

* Draw faster

- Draw the same things, in less time
- Draw fewer things
- Draw simpler things

- Trade memory for more speed

* Use less resources (typically: memory)

* Other, somewhat related concerns:

— Improve battery/power consumption

4

— Reduce drawing latency

5 The Qt, OpenGL and C++ experts

Detect and avoid overdraw

The Qt, OpenGL and C++ experts

Overdrawing

* The easiest way of being faster is to draw less

* |deally, we would like Qt Quick to draw all and only the
elements the user can see

* However, Qt Quick draws every item with visible set to
true, including:

- ltems that are out of bounds

— Items that are completely obscured by opaque ones stacked on top

— Items that are clipped by ancestors with clip: true

4

7 The Qt, OpenGL and C++ experts

Overdrawing

* Qt Quick does not implement any optimization to prevent
overdrawing

— No Z-Fill pass, no frustum culling, no occlusion culling, etc.

* = We must manually hide items that are not visible by the
user

— Using built-in elements (e.g. StackView) helps

8 The Qt, OpenGL and C++ experts

Detecting Overdrawing

* GammaRay can visualize overdrawing, also highlighting
items which are visible but out of view
— Or: export QSG_VISUALIZE=overdraw

— Or: use some OpenGL debugging utility; look for “overdraw”, “Z complexity”,
“culled primitives”, etc.

9 The Qt, OpenGL and C++ experts

Consider caching items that are
expensive to render.

The Qt, OpenGL and C++ experts

4KDAB

Caching
* Caching means trading (video) memory for rendering
speed

* Extremely useful in case we have some expensive element
to render

* Usual culprit: shader effects

— Blur, opacity masks, colorizations...

11 The Qt, OpenGL and C++ experts

AKDAB
Why caching complex items? '

* OpenGL does not support partial updates

* Every time anything changes in our scene, Qt Quick has to
repaint everything from scratch

— Including items that have not changed at all!

12 The Qt, OpenGL and C++ experts

AKDAB
Detecting “expensive to render” items '

* Use an OpenGL tracer/profiler and investigate
- NSight, apitrace, ...

* Shader effects (blur, shadows...) are good candidates for
caching

13 The Qt, OpenGL and C++ experts

Caching in Qt Quick '

* Qt Quick has built-in support for caching
* Simply set: layer.enabled: true

* = Consider caching bigger elements (root of trees
containing many elements), and not each and every small
one

14 The Qt, OpenGL and C++ experts

Understand OpenGL

The Qt, OpenGL and C++ experts

OpenGL

* OpenGlL is (a specification for) a C API for 3D graphics

— Cross-platform, royalty-free

* It allows us to exploit the computational power of GPUs

* Very long history and evolution

— A couple of paradigm shifts happened along the way
— Today we tend to use “Modern OpenGL”

* Qt has always had excellent support for OpenGL

4

16 The Qt, OpenGL and C++ experts

OpenGL

I
|
|

* OpenGL defines a complex e 2 e Bufes
state machine around a -
dataflow processing .

: : e
pipeline oo

* Inputs of the pipeline get A yas hi
orocessed according to the =

current state

Tests & Blendlng

Fixed

* The output is pixels on the
screen

17 The Qt, OpenGL and C++ experts

OpenGL pipeline

Draw) VertexPuller «—— Buffers
commands Fixed | a
Input + T Input
Vertex Shader
Prog.
¥
laLLLLLLLL Primitive Assembly LU
— - & Clipping Fied - =

Rasterisation &
Interpolation

e

Fragment Shader T

Prog. ‘
1 /_I Outputs |
Per-fragment ‘ Output

Tests &Blending _ .

Fixed

I
I
I
I
I
|
I
I
I
I
I
I
I
|
i :
I
I
I
I
I
|
I
I
I
I
I
I
I
I

18 The Qt, OpenGL and C++ experts

Drawing in OpenGL

4KDAB

* In order to draw something, we must set up lots of state
upfront:

Inputs to the pipeline, usually in the form of Vertex Buffer Objects

What certain programmable processing steps should do (Vertex/Fragment
Shaders)

Ancillary data, such as: uniforms, textures, etc.

Countless extra switches and knobs

* When everything is set up, we can issue draw commands

< * State never changes during a draw command

19 The Qt, OpenGL and C++ experts

Drawing in OpenGL '

* Drawing multiple objects is usually a rinse-and-repeat
process.
1. Set all the required OpenGL state
2. Issue one (or more) draw commands using that state

3. Go back to 1. (until we've drawn everything)

* Moral lesson: we can't draw different objects together if
they require different state

20 The Qt, OpenGL and C++ experts

Understand OpenGL Performance

The Qt, OpenGL and C++ experts

OpenGL Performance

* The best way to think about
OpenGL performance is
comparing OpenGL to a
high-speed train.

* What are the performance
charateristics of such a
machine?

22 The Qt, OpenGL and C++ experts

4KDAB

* Fast: capable of rendering

High-Speed Trains vs OpenGL

* Fast: capable of

transporting hundreds of (hundreds of) thousands of
passengers at high speeds geometric primitives per
(> 300km/h). second.

penGL

The Qt, OpenGL and C++ experts

23

High-Speed Trains vs OpenGL '

* Constrained: only moves on * Constrained: only understands
certain paths. certain geometric primitives

* Tracks need to be laid down and draw commands.

before we can have a train * Lots of state needs to be set
running on them. before drawing anything.

penGL

24 The Qt, OpenGL and C++ experts

High-Speed Trains vs OpenGL '

* Trains have a lot of inertia. * OpenGL has lots of “inertia”
- They take forever to speed up and ~ GPUs are complicated to set up
slow down - The command latency is a factor
* Stopping a high-speed train + Stopping the pipeline too
very often is a no go. often is a no go.
= e

pen

25 The Qt, OpenGL and C++ experts

Stopping too often

* We need to stop every time we need to change any part of
the OpenGL state

4

Buffers to read from; that is: which objects to render
Which texture(s) to use

Opacity settings, clipping settings

Shaders used (material/appearance)

Render target (e.g. if drawing offscreen, maybe as part of a QQuickPaintedltem
or a shader effect)

* As we have seen, having too many changes is detrimental
to performance.

26 The Qt, OpenGL and C++ experts

4KDAB

Stopping too often

* In the ideal scenario, we would set OpenGL up in a way that
it can render a huge number of elements in the scene in
one go (one draw command or so), without changing state.

— A huge part of of “Modern OpenGL” is all about this: Instanced Drawing,
Uniform Buffer Objects, Texture Arrays, Bindless Textures, Indirect Drawing...

* However, this is very very hard in practice
- Generality of Qt Quick rendering (we're not building a specialized engine)

— Support for legacy APIs in the Qt Quick renderer (hello, OpenGL ES 2)

4

27 The Qt, OpenGL and C++ experts

Minimize state changes in Qt Quick

The Qt, OpenGL and C++ experts

Qt Quick Rendering '

* Qt Quick renders a given scene using OpenGL

* The elements that we add into a Qt Quick application
(Image, Text, etc.) get converted into OpenGL commands

* The mapping between elements in a scene and OpenGL
commands is not 1:1

- |t would issue lots of draw commands!

29 The Qt, OpenGL and C++ experts

4

The Qt Quick Scenegraph '

* The Qt Quick elements in a scene create a data structure
called the scenegraph

* The scenegraph describes how to render a given scene:

— What are the geometries to draw (usually triangles), the shaders, the textures

— What is the necessary OpenGL state to set to draw them

* You can use tools such as GammaRay to visualize the
scenegraph contents

30 The Qt, OpenGL and C++ experts

GammaRay Settings Help

QQuickview[this=0x2ddaca0] w
Font Browser Properties = Material = Geometry
Raw Vertex Data Preview
Object Type s
ST T - N vertex wvertexColor vertexOffset o
X c ransform MNode
Locales 0x28c3020 Transform Mode 79 52.1899, 14,3656 0,0,0,0 14,3656, 0
MR aes v 0x2f8f200 Transform Node 80 0.81007. 143656 0.0.0,0 17.2963, nan
0x2fc07a0 Transform Node |
Meta Objects v Ox2fc2420 Transform Node 81 51.8088, 17.2963 250, 205, 255, 2535 17.2963, nan
Meta Types v O0x2fc2590 Transform MNode g2 1.19335, 17.2963 255, 255, 255, 255 17.2963, nan
0x2fc40a0 Transform Mode | _ _
Mime Types < Ox2fea 1f0 Transform Mode 83 51.8088, 17,2963 170, 170, 170, 255 17.2963, nan
Madels ~ 0x2fe09d0 Transform Mode 84 1.19335, 17.2963 170, 170, 170, 255 17.154, nan
. 0><f2fe5eao Geo”;ew Noje 85 52,7965, 17.154 170, 170, 170, 255 17.154, nan
|ects 0x2fe33e0 Transform MNode |
_ > Ox2fcaf30 Transform Node g6 0.203531, 17.154 170, 170, 170, 255 17.154,0
Quick Scenes |
Ox2fesd20 Transform Node g7 527965, 17.154 0,0,0,0 17.154, 0
Resources > Ox2fc5e90 Transform Mode |
v 0x2fco620 Transform Mode 88 0.203531, 17.154 0,0,0,.0 20.0003, nan |
0x2fd24a0 Geometry Node - 89 52, 20.0003 o e e e e T 20.0003, nan |
signals tems Scene Graph | :
:) 2 91 52, 20.0003 170, 170, 170, 255 20.0003, nan
Standard Paths W BT al = Fh| By . A\ "
92 —_—-
R - ; \ = \
93 53, 20.0003 170, 170, 170, 255 20.0003, nan . —
Styles | —_——— ——
94 -1.90735e-06, 20.0003 | 170, 170, 170, 255 20.0003,0 T ———
Text Codecs | S s |
95 53,20.0003 0,0,0,0 20.0003, 0 _—
96 -1.90735e-06, 20.0003 0, 0,0, 0 48, nan : _
Timers |
a7
T lati |
ranslations -
Qg9 52, 46 170, 170, 170, 255 48, nan
Widgets 100 1,46 170, 170, 170, 255 48, nan
101 53,46 170, 170, 170, 255 46, nan
102 0,46 170, 170, 170, 255 46,0
103 53,46 0,0,0.0 46,0
104 0,46 0.0.0.0 48.704, nan
105 51.8088, 48.704 255, 255, 250, 255 48.704, nan
106 1.1934, 48.704 250: 205, 255: 235 48.704, nan
- | Drawing mode: GL_TRIANGLE_STRIP
107 51,8068, 48,704 170, 170, 170, 255 148,704, nan b

600 1000

The Qt Quick Renderer '

* The Qt Quick Renderer traverses the scenegraph and
renders its contents using OpenGL

* Using a scenegraph unlocks many optimization possibilities

* Qt Quick can analyze and optimize the scenegraph

— As it contains all the data required to render

32 The Qt, OpenGL and C++ experts

Rendering the Scenegraph '

— T~

* Geometry | .
« Material (solid fill) 1.tChoaIes<‘:Ee thle geometries for
;,'ffff,f,lfffffffffffffffffffffffiiiiiiiiiiiiiZjiiiiiiiiiiiiiiiij; e rectan g es.
: fﬂeact’efj;tlr(ytext) 2. Set the solid fill material.
« Textures 3. Draw both rectangles (in
-+ Geometry _
. Material (solid fill 4. Set the text material.
* Transformation \>- Draw the text. Y
Qt Quick Scene Scenegraph Renderer
‘ grap

33 The Qt, OpenGL and C++ experts

Batching

4KDAB

In order to maximize OpenGL performance, Qt Quick will
automatically try to draw together scene graph nodes that

require the same OpenGlL state

This works by merging together the geometries of multiple
elements, so to draw them all in one draw call

We call this process batching

34 The Qt, OpenGL and C++ experts

Visualizing Batching '

* We can use GammaRay to visualize batching at runtime

- Or set QSG_VISUALIZE=batches, QSG_RENDERER_DEBUG=render
— QSG_VISUALIZE=clip for visualizing clipping

* Each different color means a different batch is being
submitted to draw the corresponding elements

* < Too many batches is bad!

35 The Qt, OpenGL and C++ experts

When is batching applied? '

* The Qt Quick Renderer uses a few simple heuristics to merge
multiple elements in the same batch.

* Rule of thumb: any change of
— Opacity
- Clipping
- Material (i.e. shader + textures + other uniforms)

- Render target (ShaderEffect, layer, QQuickPaintedltem)

results in a different batch.

< * Visual overlapping and complex transformations also take a role.

36 The Qt, OpenGL and C++ experts

AKDAB
Wait, is this a real problem? '
* YES!

* |'ve seen so much code that tries to be “clever” and results
in hundreds of unnecessary draw calls

— The simplicity of Qt Quick 2 is a double-edge sword sometimes

* “Everything works fine on desktop but terribly slow on
embedded/mobile”

— “Qt Quick is terrible!” “Linux is terrible!” “Linux drivers are terrible!”

4

37 The Qt, OpenGL and C++ experts

Questions?

The Qt, OpenGL and C++ experts

Thanks!

giuseppe.dangelo@kdab.com

The Qt, OpenGL and C++ experts

