
Optimizing Rendering of
Qt Quick 2 Applications
Qt World Summit 2019, Berlin

Giuseppe D'Angelo

giuseppe.dangelo@kdab.com

 2

About me
● Senior Software Engineer,

KDAB
● Developer & Trainer
● Qt developer since ~2000

– Qt contributor

● Ask me about Qt Core, Qt
Gui, Qt Quick, ...
– And about Modern C++, 3D

graphics

Agenda

 4

Performance in Qt Quick: many aspects
● C++ performance

– CPU, I/O, scalability, lock contention...

● JavaScript performance
– QML compiler, incubation, bindings, animators...

● Rendering performance
– Asset conditioning, offline processing...
– Runtime performance when using OpenGL You are here

 5

Performance in rendering
● Draw faster

– Draw the same things, in less time
– Draw fewer things
– Draw simpler things
– Trade memory for more speed

● Use less resources (typically: memory)
● Other, somewhat related concerns:

– Improve battery/power consumption
– Reduce drawing latency

Detect and avoid overdraw

 7

Overdrawing
● The easiest way of being faster is to draw less
● Ideally, we would like Qt Quick to draw all and only the

elements the user can see
● However, Qt Quick draws every item with visible set to
true, including:
– Items that are out of bounds
– Items that are completely obscured by opaque ones stacked on top
– Items that are clipped by ancestors with clip: true

 8

Overdrawing
● Qt Quick does not implement any optimization to prevent

overdrawing
– No Z-Fill pass, no frustum culling, no occlusion culling, etc.

● 👉 We must manually hide items that are not visible by the
user
– Using built-in elements (e.g. StackView) helps

 9

Detecting Overdrawing
● GammaRay can visualize overdrawing, also highlighting

items which are visible but out of view
– Or: export QSG_VISUALIZE=overdraw
– Or: use some OpenGL debugging utility; look for “overdraw”, “Z complexity”,

“culled primitives”, etc.

Consider caching items that are
expensive to render.

 11

Caching
● Caching means trading (video) memory for rendering

speed
● Extremely useful in case we have some expensive element

to render
● Usual culprit: shader effects

– Blur, opacity masks, colorizations...

 12

Why caching complex items?
● OpenGL does not support partial updates
● Every time anything changes in our scene, Qt Quick has to

repaint everything from scratch
– Including items that have not changed at all!

 13

Detecting “expensive to render” items
● Use an OpenGL tracer/profiler and investigate

– NSight, apitrace, ...

● Shader effects (blur, shadows…) are good candidates for
caching

 14

Caching in Qt Quick
● Qt Quick has built-in support for caching
● Simply set: layer.enabled: true
● 👉 Consider caching bigger elements (root of trees

containing many elements), and not each and every small
one

Understand OpenGL

 16

OpenGL
● OpenGL is (a specification for) a C API for 3D graphics

– Cross-platform, royalty-free

● It allows us to exploit the computational power of GPUs
● Very long history and evolution

– A couple of paradigm shifts happened along the way
– Today we tend to use “Modern OpenGL”

● Qt has always had excellent support for OpenGL

 17

OpenGL
● OpenGL defines a complex

state machine around a
dataflow processing
pipeline

● Inputs of the pipeline get
processed according to the
current state

● The output is pixels on the
screen

 18

OpenGL pipeline

 19

Drawing in OpenGL
● In order to draw something, we must set up lots of state

upfront:
– Inputs to the pipeline, usually in the form of Vertex Buffer Objects
– What certain programmable processing steps should do (Vertex/Fragment

Shaders)
– Ancillary data, such as: uniforms, textures, etc.
– Countless extra switches and knobs

● When everything is set up, we can issue draw commands
● State never changes during a draw command

 20

Drawing in OpenGL
● Drawing multiple objects is usually a rinse-and-repeat

process:
1. Set all the required OpenGL state

2. Issue one (or more) draw commands using that state

3. Go back to 1. (until we've drawn everything)

● Moral lesson: we can't draw different objects together if
they require different state

Understand OpenGL Performance

 22

OpenGL Performance
● The best way to think about

OpenGL performance is
comparing OpenGL to a
high-speed train.

● What are the performance
charateristics of such a
machine?

 23

High-Speed Trains vs OpenGL
● Fast: capable of

transporting hundreds of
passengers at high speeds
(> 300km/h).

● Fast: capable of rendering
(hundreds of) thousands of
geometric primitives per
second.

 24

High-Speed Trains vs OpenGL
● Constrained: only moves on

certain paths.
● Tracks need to be laid down

before we can have a train
running on them.

● Constrained: only understands
certain geometric primitives
and draw commands.

● Lots of state needs to be set
before drawing anything.

 25

High-Speed Trains vs OpenGL
● Trains have a lot of inertia.

– They take forever to speed up and
slow down

● Stopping a high-speed train
very often is a no go.

● OpenGL has lots of “inertia”
– GPUs are complicated to set up
– The command latency is a factor

● Stopping the pipeline too
often is a no go.

 26

Stopping too often
● We need to stop every time we need to change any part of

the OpenGL state
– Buffers to read from; that is: which objects to render
– Which texture(s) to use
– Opacity settings, clipping settings
– Shaders used (material/appearance)
– Render target (e.g. if drawing offscreen, maybe as part of a QQuickPaintedItem

or a shader effect)

● As we have seen, having too many changes is detrimental
to performance.

 27

Stopping too often
● In the ideal scenario, we would set OpenGL up in a way that

it can render a huge number of elements in the scene in
one go (one draw command or so), without changing state.
– A huge part of of “Modern OpenGL” is all about this: Instanced Drawing,

Uniform Buffer Objects, Texture Arrays, Bindless Textures, Indirect Drawing...

● However, this is very very hard in practice
– Generality of Qt Quick rendering (we're not building a specialized engine)
– Support for legacy APIs in the Qt Quick renderer (hello, OpenGL ES 2)

Minimize state changes in Qt Quick

 29

Qt Quick Rendering
● Qt Quick renders a given scene using OpenGL
● The elements that we add into a Qt Quick application

(Image, Text, etc.) get converted into OpenGL commands
● The mapping between elements in a scene and OpenGL

commands is not 1:1
– It would issue lots of draw commands!

 30

The Qt Quick Scenegraph
● The Qt Quick elements in a scene create a data structure

called the scenegraph
● The scenegraph describes how to render a given scene:

– What are the geometries to draw (usually triangles), the shaders, the textures
– What is the necessary OpenGL state to set to draw them

● You can use tools such as GammaRay to visualize the
scenegraph contents

 31

The Qt Quick Scenegraph in GammaRay

 32

The Qt Quick Renderer
● The Qt Quick Renderer traverses the scenegraph and

renders its contents using OpenGL
● Using a scenegraph unlocks many optimization possibilities
● Qt Quick can analyze and optimize the scenegraph

– As it contains all the data required to render

 33

Rendering the Scenegraph

Some Text

● Geometry
● Material (solid fill)

● Geometry
● Material (text)
● Textures

● Geometry
● Material (solid fill)
● Transformation

Qt Quick Scene Scenegraph Renderer

1. Coalesce the geometries for
the rectangles.

2. Set the solid fill material.
3. Draw both rectangles (in

one draw call!).
4. Set the text material.
5. Draw the text.
}

 34

Batching
● In order to maximize OpenGL performance, Qt Quick will

automatically try to draw together scene graph nodes that
require the same OpenGL state

● This works by merging together the geometries of multiple
elements, so to draw them all in one draw call

● We call this process batching

 35

Visualizing Batching
● We can use GammaRay to visualize batching at runtime

– Or set QSG_VISUALIZE=batches, QSG_RENDERER_DEBUG=render
– QSG_VISUALIZE=clip for visualizing clipping

● Each different color means a different batch is being
submitted to draw the corresponding elements

● 👉 Too many batches is bad!

 36

When is batching applied?
● The Qt Quick Renderer uses a few simple heuristics to merge

multiple elements in the same batch.
● Rule of thumb: any change of

– Opacity
– Clipping
– Material (i.e. shader + textures + other uniforms)
– Render target (ShaderEffect, layer, QQuickPaintedItem)

results in a different batch.
● Visual overlapping and complex transformations also take a role.

 37

Wait, is this a real problem?
● YES!
● I've seen so much code that tries to be “clever” and results

in hundreds of unnecessary draw calls
– The simplicity of Qt Quick 2 is a double-edge sword sometimes

● “Everything works fine on desktop but terribly slow on
embedded/mobile”
– “Qt Quick is terrible!” “Linux is terrible!” “Linux drivers are terrible!”

Questions?

Thanks!
giuseppe.dangelo@kdab.com

