
Multithreading	with	Qt
Giuseppe	D'Angelo,	Senior	Software	Engineer	at	KDAB



Agenda

p.2

QThread	(page	4)

Synchronization	(page	18)

Thread	safety	in	Qt	(page	26)

Qt	and	the	Standard	Library	threading	facilities	(page	38)



p.3

Do	you	know	what	a	thread	is?



QThread

QThread p.4

QThread

Synchronization

Thread	safety	in	Qt

Qt	and	the	Standard	Library	threading	facilities



QThread

QThread p.5

QThread	is	the	central	class	in	Qt	to	run	code	in	a	different	thread

It's	a	QObject	subclass
Not	copiable/moveable
Has	signals	to	notify	when	the	thread	starts/finishes

It	is	meant	to	manage	a	thread

class://QThread
class://QObject


QThread	usage

QThread p.6

To	create	a	new	thread	executing	some	code,	subclass	QThread	and
reimplement	run()

Then	create	an	instance	of	the	subclass	and	call	start()

Threads	have	priorities	that	you	can	specify	as	an	optional	parameter	to
start(),	or	change	with	setPriority()

class://QThread
class://QThread::run
class://QThread::start
class://QThread::start
class://QThread::setPriority


QThread	usage

QThread p.7

1 class	MyThread	:	public	QThread	{
2 private:
3     void	run()	override	{
4         //	code	to	run	in	the	new	thread
5     }
6 };

1 MyThread	*thread	=	new	MyThread;
2 thread->start();	//	starts	a	new	thread	which	calls	run()
3 //	...
4 thread->wait();	//	waits	for	the	thread	to	finish



QThread	usage

QThread p.8

The	thread	will	stop	running	when	(some	time	after)	returning	from	run()

QThread::isRunning()	and	QThread::isFinished()	provide	information
about	the	execution	of	the	thread

You	can	also	connect	to	the	QThread::started()	and
QThread::finished()	signals

A	thread	can	stop	its	execution	temporarily	by	calling	one	of	the
QThread::sleep()	functions
Generally	a	bad	idea,	being	event	driven	(or	polling)	is	much	much
better

You	can	wait	for	a	QThread	to	finish	by	calling	wait()	on	it
Optionally	passing	a	maximum	number	of	milliseconds	to	wait

class://QThread::run
class://QThread::isRunning
class://QThread::isFinished
class://QThread::started
class://QThread::finished
class://QThread::sleep
class://QThread
class://QThread::wait


QThread	caveats

QThread p.9

From	a	non-main	thread	you	cannot:

Perform	any	GUI	operation
Including,	but	not	limited	to:	using	any	QWidget	/	Qt	Quick	/	QPixmap
APIs
Using	QImage,	QPainter,	etc.	(i.e.	"client	side")	is	OK
Using	OpenGL	may	be	OK:	check	at	runtime
QOpenGLContext::supportsThreadedOpenGL()

Call	Q(Core|Gui)Application::exec()

class://QWidget
class://QPixmap
class://QImage
class://QPainter
class://QOpenGLContext::supportsThreadedOpenGL
class://Q(Core|Gui)Application::exec


QThread	caveats

QThread p.10

Be	sure	to	always	destroy	all	the	QObjects	living	in	secondary	threads
before	destroying	the	corresponding	QThread	object

Do	not	ever	block	the	GUI	thread

class://QObject
class://QThread


Ensuring	destruction	of	QObjects

QThread p.11

Create	them	on	QThread::run()	stack

Connect	their	QObject::deleteLater()	slot	to	the	QThread::finished()
signal
Yes,	this	will	work

Move	them	out	of	the	thread

class://QThread::run
class://QObject::deleteLater
class://QThread::finished


Ensuring	destruction	of	QObjects

QThread p.12

1 class	MyThread	:	public	QThread	{
2 private:
3     void	run()	override	{
4         MyQObject	obj1,	obj2,	obj3;
5
6         QScopedPointer<OtherQObject>	p;
7         if	(condition)
8             p.reset(new	OtherQObject);
9
10         auto	anotherObj	=	new	AnotherQObject;
11         connect(this,	&QThread::finished,
12                 anotherObj,	&QObject::deleteLater);
13
14         auto	yetAnother	=	new	YetAnotherQObject;
15
16         //	...	do	stuff	...
17
18         //	Before	quitting	the	thread,	move	this	object	to	the	main	thread
19         yetAnother->moveToThread(qApp->thread());
20         //	Somehow	notify	the	main	thread	about	this	object,
21         //	so	it	can	be	deleted	there.
22         //	Do	not	touch	the	object	from	this	thread	after	this	point!
23     }
24 };



QThread	usage

QThread p.13

There	are	two	basic	strategies	of	running	code	in	a	separate	thread	with
QThread:

Without	an	event	loop

With	an	event	loop



QThread	usage	without	an	event	loop

QThread p.14

Subclass	QThread	and	override	QThread::run()

Create	an	instance	and	start	the	new	thread	via	QThread::start()

class://QThread
class://QThread::run
class://QThread::start


QThread	usage	without	an	event	loop

QThread p.14

Subclass	QThread	and	override	QThread::run()

Create	an	instance	and	start	the	new	thread	via	QThread::start()
1 class	MyThread	:	public	QThread	{
2 private:
3     void	run()	override	{
4         loadFilesFromDisk();
5         doCalculations();
6         saveResults();
7     }
8 };

1 auto	thread	=	new	MyThread;
2 thread->start();
3 //	some	time	later...
4 thread->wait();

class://QThread
class://QThread::run
class://QThread::start


QThread	usage	with	an	event	loop

QThread p.15

An	event	loop	is	necessary	when	dealing	with	timers,	networking,	queued
connections,	and	so	on.

Qt	supports	per-thread	event	loops:

Each	thread-local	event	loop	delivers	events	for	the	QObjects	living	in	that
thread.



QThread	usage	with	an	event	loop

QThread p.16

We	can	start	a	thread-local	event	loop	by	calling	QThread::exec()	from
within	run():
1 class	MyThread	:	public	QThread	{
2 private:
3     void	run()	override	{
4         auto	socket	=	new	QTcpSocket;
5         socket->connectToHost(...);
6
7         exec();	//	run	the	event	loop
8
9         //	cleanup
10     }
11 };

QThread::quit()	or	QThread::exit()	will	quit	the	event	loop

We	can	also	use	QEventLoop
Or	manual	calls	to	QCoreApplication::processEvents()

class://QThread::exec
class://QThread::run
class://QThread::quit
class://QThread::exit
class://QEventLoop
class://QCoreApplication::processEvents


QThread	usage	with	an	event	loop

QThread p.17

The	default	implementation	of	QThread::run()	actually	calls
QThread::exec()

This	allows	us	to	run	code	in	other	threads	without	subclassing	QThread:
1 auto	thread	=	new	QThread;
2
3 auto	worker	=	new	Worker;
4
5 connect(thread,	&QThread::started,	worker,	&Worker::doWork);
6 connect(worker,	&Worker::workDone,	thread,	&QThread::quit);
7
8 connect(thread,	&QThread::finished,	worker,	&Worker::deleteLater);
9
10 worker->moveToThread(thread);
11 thread->start();

class://QThread::run
class://QThread::exec


Synchronization

Synchronization p.18

QThread

Synchronization

Thread	safety	in	Qt

Qt	and	the	Standard	Library	threading	facilities



Synchronization p.19

What	is	the
single

most	important	thing
about	threads?



Synchronization

Synchronization p.20

Any	concurrent	access	to	shared	resources	must	not	result	in	a	data
race

Two	conditions	for	this	to	happen:
1.	At	least	one	of	the	accesses	is	a	write
2.	The	accesses	are	not	atomic	and	no	access	happens	before	the	other



Synchronization

Synchronization p.21

Qt	has	a	complete	set	of	cross-platform,	low-level	APIs	for	dealing	with
synchronization:

QMutex	is	a	mutex	class	(recursive	and	non-recursive)

QSemaphore	is	a	semaphore

QWaitCondition	is	a	condition	variable

QReadWriteLock	is	a	shared	mutex

QAtomicInt	is	an	atomic	int

QAtomicPointer<T>	is	an	atomic	pointer	to	T

There	are	also	RAII	classes	for	lock	management,	such	as	QMutexLocker,
QReadLocker	and	so	on.

class://QMutex
class://QSemaphore
class://QWaitCondition
class://QReadWriteLock
class://QAtomicInt
class://int
class://QAtomicPointer<T>
class://QMutexLocker
class://QReadLocker


Mutex	Example

Synchronization p.22

1 class	Thread	:	public	QThread
2 {
3     bool	m_cancel;
4 public:
5     explicit	Thread(QObject	*parent	=	nullptr)
6       :	QThread(parent),	m_cancel(false)	{}
7
8     void	cancel()	//	called	by	GUI
9     {
10         m_cancel	=	true;
11     }
12
13 private:
14     bool	isCanceled()	const	//	called	by	run()
15     {
16         return	m_cancel;
17     }
18
19     void	run()	override	{	//	reimplemented	from	QThread
20         while	(!isCanceled())
21             doSomething();
22     }
23 };



Mutex	Example	(cont'd)

Synchronization p.23

1 class	Thread	:	public	QThread
2 {
3     mutable	QMutex	m_mutex;	//	protects	m_cancel
4     bool	m_cancel;
5 public:
6     explicit	Thread(QObject	*parent	=	nullptr)
7       :	QThread(parent),	m_cancel(false)	{}
8
9     void	cancel()	{	//	called	by	GUI
10         const	QMutexLocker	locker(&m_mutex);
11         m_cancel	=	true;
12     }
13
14 private:
15     bool	isCanceled()	const	{	//	called	by	run()
16         const	QMutexLocker	locker(&m_mutex);
17         return	m_cancel;
18     }
19
20     void	run()	override	{	//	reimplemented	from	QThread
21         while	(!isCanceled())
22             doSomething();
23     }
24 };



QThread's	built-in	cancel

Synchronization p.24

QThread	actually	has	this	already	built-in:

QThread::requestInterruption(),	to	set	the	flag

QThread::isInterruptionRequested(),	to	check	the	flag
1 void	run()	override	{	//	reimplemented	from	QThread
2     const	int	checkAtNthIteration	=	10;
3
4     int	iteration	=	0;
5     while	(true)	{
6         ++iteration;
7         if	(iteration	==	checkAtNthIteration)	{
8             iteration	=	0;
9             if	(isInterruptionRequested())
10                 return;
11         }
12
13         doSomething();
14     }
15 }

class://QThread
class://QThread::requestInterruption
class://QThread::isInterruptionRequested


Quick	Quiz:	Mutex	Example

Synchronization p.25

In	this	code:
explicit	Thread(QObject	*parent	=	nullptr)
  :	QThread(parent),	m_cancel(false)	{}

don't	you	need	to	protect
m_cancel(false)

with	m_mutex,	too,	like	in	cancel()?
1 void	cancel()	{	//	called	by	GUI
2     const	QMutexLocker	locker(&m_mutex);
3     m_cancel	=	true;
4 }



Thread	safety	in	Qt

Thread	safety	in	Qt p.26

QThread

Synchronization

Thread	safety	in	Qt

Qt	and	the	Standard	Library	threading	facilities



Reentrancy	definitions

Thread	safety	in	Qt p.27

A	function	is:



Reentrancy	definitions

Thread	safety	in	Qt p.27

A	function	is:

Thread	safe:	if	it's	safe	for	it	to	be	invoked	at	the	same	time,	from	multiple
threads,	on	the	same	data,	without	synchronization



Reentrancy	definitions

Thread	safety	in	Qt p.27

A	function	is:

Thread	safe:	if	it's	safe	for	it	to	be	invoked	at	the	same	time,	from	multiple
threads,	on	the	same	data,	without	synchronization

Reentrant:	if	it's	safe	for	it	to	be	invoked	at	the	same	time,	from	multiple
threads,	on	different	data;	otherwise	it	requires	external	synchronization



Reentrancy	definitions

Thread	safety	in	Qt p.27

A	function	is:

Thread	safe:	if	it's	safe	for	it	to	be	invoked	at	the	same	time,	from	multiple
threads,	on	the	same	data,	without	synchronization

Reentrant:	if	it's	safe	for	it	to	be	invoked	at	the	same	time,	from	multiple
threads,	on	different	data;	otherwise	it	requires	external	synchronization

Non-reentrant	(thread	unsafe):	if	it	cannot	be	invoked	from	more	than	one
thread	at	all



Reentrancy	definitions

Thread	safety	in	Qt p.27

A	function	is:

Thread	safe:	if	it's	safe	for	it	to	be	invoked	at	the	same	time,	from	multiple
threads,	on	the	same	data,	without	synchronization

Reentrant:	if	it's	safe	for	it	to	be	invoked	at	the	same	time,	from	multiple
threads,	on	different	data;	otherwise	it	requires	external	synchronization

Non-reentrant	(thread	unsafe):	if	it	cannot	be	invoked	from	more	than	one
thread	at	all

For	classes,	the	above	definitions	apply	to	non-static	member	functions	when
invoked	on	the	same	instance.	(In	other	words,	considering	the	this	pointer	as
an	argument.)



Examples

Thread	safety	in	Qt p.28

Thread	safe:
QMutex
QObject::connect()
QCoreApplication::postEvent()

Reentrant:
QString
QVector
QImage
value	classes	in	general

Non-reentrant:
QWidget	(including	all	of	its	subclasses)
QQuickItem
QPixmap
in	general,	GUI	classes	are	usable	only	from	the	main	thread

class://QMutex
class://QObject::connect
class://QCoreApplication::postEvent
class://QString
class://QVector
class://QImage
class://QWidget
class://QQuickItem
class://QPixmap


Thread	safety	for	Qt	classes/functions

Thread	safety	in	Qt p.29

The	documentation	of	each	class	/	function	in	Qt	has	notes	about	its	thread
safety:

Unless	otherwise	specified,	classes	and	functions	are	non-reentrant.



QObject:	thread	affinity

Thread	safety	in	Qt p.30

What	about	QObject?



QObject:	thread	affinity

Thread	safety	in	Qt p.30

What	about	QObject?

QObject	itself	is	thread-aware.

Every	QObject	instance	holds	a	reference	to	the	thread	it	was	created	into
(QObject::thread())
We	say	that	the	object	lives	in,	or	has	affinity	with	that	thread

We	can	move	an	instance	to	another	thread	by	calling
QObject::moveToThread(QThread	*)

class://QObject
class://QObject
class://QObject::thread
class://QObject::moveToThread


QObject:	thread	safety

Thread	safety	in	Qt p.31

QObject	is	reentrant	according	to	the	documentation,	however:

class://QObject


QObject:	thread	safety

Thread	safety	in	Qt p.31

QObject	is	reentrant	according	to	the	documentation,	however:

Event-based	classes	are	non-reentrant	(timers,	sockets,	...)

class://QObject


QObject:	thread	safety

Thread	safety	in	Qt p.31

QObject	is	reentrant	according	to	the	documentation,	however:

Event-based	classes	are	non-reentrant	(timers,	sockets,	...)

The	event	dispatching	for	a	given	QObject	happens	in	the	thread	it	has
affinity	with

class://QObject
class://QObject


QObject:	thread	safety

Thread	safety	in	Qt p.31

QObject	is	reentrant	according	to	the	documentation,	however:

Event-based	classes	are	non-reentrant	(timers,	sockets,	...)

The	event	dispatching	for	a	given	QObject	happens	in	the	thread	it	has
affinity	with

All	the	QObjects	in	the	same	parent/child	tree	must	have	the	same	thread
affinity
Notably,	you	can't	parent	QObjects	created	in	a	thread	to	the	QThread
object	itself

class://QObject
class://QObject
class://QObject
class://QObject
class://QThread


QObject:	thread	safety

Thread	safety	in	Qt p.31

QObject	is	reentrant	according	to	the	documentation,	however:

Event-based	classes	are	non-reentrant	(timers,	sockets,	...)

The	event	dispatching	for	a	given	QObject	happens	in	the	thread	it	has
affinity	with

All	the	QObjects	in	the	same	parent/child	tree	must	have	the	same	thread
affinity
Notably,	you	can't	parent	QObjects	created	in	a	thread	to	the	QThread
object	itself

You	must	delete	all	QObjects	living	in	a	certain	QThread	before	destroying
the	QThread	instance

class://QObject
class://QObject
class://QObject
class://QObject
class://QThread
class://QObject
class://QThread
class://QThread


QObject:	thread	safety

Thread	safety	in	Qt p.31

QObject	is	reentrant	according	to	the	documentation,	however:

Event-based	classes	are	non-reentrant	(timers,	sockets,	...)

The	event	dispatching	for	a	given	QObject	happens	in	the	thread	it	has
affinity	with

All	the	QObjects	in	the	same	parent/child	tree	must	have	the	same	thread
affinity
Notably,	you	can't	parent	QObjects	created	in	a	thread	to	the	QThread
object	itself

You	must	delete	all	QObjects	living	in	a	certain	QThread	before	destroying
the	QThread	instance

You	can	only	call	moveToThread()	on	a	QObject	from	the	same	thread	the
object	has	affinity	with	(moveToThread()	is	non-reentrant)

class://QObject
class://QObject
class://QObject
class://QObject
class://QThread
class://QObject
class://QThread
class://QThread
class://QObject::moveToThread
class://QObject
class://QObject::moveToThread


QObject:	thread	safety

Thread	safety	in	Qt p.31

QObject	is	reentrant	according	to	the	documentation,	however:

Event-based	classes	are	non-reentrant	(timers,	sockets,	...)

The	event	dispatching	for	a	given	QObject	happens	in	the	thread	it	has
affinity	with

All	the	QObjects	in	the	same	parent/child	tree	must	have	the	same	thread
affinity
Notably,	you	can't	parent	QObjects	created	in	a	thread	to	the	QThread
object	itself

You	must	delete	all	QObjects	living	in	a	certain	QThread	before	destroying
the	QThread	instance

You	can	only	call	moveToThread()	on	a	QObject	from	the	same	thread	the
object	has	affinity	with	(moveToThread()	is	non-reentrant)

In	practice:	it's	easier	to	think	of	QObject	as	non-reentrant,	as	it	will
make	you	avoid	many	mistakes.

class://QObject
class://QObject
class://QObject
class://QObject
class://QThread
class://QObject
class://QThread
class://QThread
class://QObject::moveToThread
class://QObject
class://QObject::moveToThread
class://QObject


QObject:	queued	connections

Thread	safety	in	Qt p.32

If	QObject	is	non-reentrant,	how	can	I	communicate	with	a	QObject	living
in	another	thread?

class://QObject
class://QObject


QObject:	queued	connections

Thread	safety	in	Qt p.32

If	QObject	is	non-reentrant,	how	can	I	communicate	with	a	QObject	living
in	another	thread?

Qt	has	a	solution:	cross-thread	signals	and	slots

class://QObject
class://QObject


QObject:	queued	connections

Thread	safety	in	Qt p.32

If	QObject	is	non-reentrant,	how	can	I	communicate	with	a	QObject	living
in	another	thread?

Qt	has	a	solution:	cross-thread	signals	and	slots

You	can	emit	a	signal	from	one	thread,	and	have	the	slot	invoked	by
another	thread
Not	just	any	thread:	the	thread	the	receiver	object	is	living	in

class://QObject
class://QObject


QObject:	queued	connections

Thread	safety	in	Qt p.33

If	the	receiver	object	of	a	connection	lives	in	a	different	thread	than	the
thread	the	signal	was	emitted	in,	the	slot	invocation	will	be	queued.



QObject:	queued	connections

Thread	safety	in	Qt p.33

If	the	receiver	object	of	a	connection	lives	in	a	different	thread	than	the
thread	the	signal	was	emitted	in,	the	slot	invocation	will	be	queued.

Under	the	hood:	a	metacall	event	is	posted	in	the	receiver's	thread's	event
queue
The	event	will	then	get	dispatched	to	the	object	by	the	right	thread
Handling	such	metacall	events	means	invoking	the	slot



QObject:	queued	connections

Thread	safety	in	Qt p.33

If	the	receiver	object	of	a	connection	lives	in	a	different	thread	than	the
thread	the	signal	was	emitted	in,	the	slot	invocation	will	be	queued.

Under	the	hood:	a	metacall	event	is	posted	in	the	receiver's	thread's	event
queue
The	event	will	then	get	dispatched	to	the	object	by	the	right	thread
Handling	such	metacall	events	means	invoking	the	slot

This	requires	that	the	receiver	object	is	living	in	a	thread	with	a	running
event	loop!



QObject:	queued	connections

Thread	safety	in	Qt p.33

If	the	receiver	object	of	a	connection	lives	in	a	different	thread	than	the
thread	the	signal	was	emitted	in,	the	slot	invocation	will	be	queued.

Under	the	hood:	a	metacall	event	is	posted	in	the	receiver's	thread's	event
queue
The	event	will	then	get	dispatched	to	the	object	by	the	right	thread
Handling	such	metacall	events	means	invoking	the	slot

This	requires	that	the	receiver	object	is	living	in	a	thread	with	a	running
event	loop!

Also,	qRegisterMetaType()	is	required	for	the	argument	types	passed

class://::qRegisterMetaType


QObject:	queued	connections

Thread	safety	in	Qt p.33

If	the	receiver	object	of	a	connection	lives	in	a	different	thread	than	the
thread	the	signal	was	emitted	in,	the	slot	invocation	will	be	queued.

Under	the	hood:	a	metacall	event	is	posted	in	the	receiver's	thread's	event
queue
The	event	will	then	get	dispatched	to	the	object	by	the	right	thread
Handling	such	metacall	events	means	invoking	the	slot

This	requires	that	the	receiver	object	is	living	in	a	thread	with	a	running
event	loop!

Also,	qRegisterMetaType()	is	required	for	the	argument	types	passed

We	can	force	any	connection	to	be	queued:
connect(sender,	&Sender::signal,	receiver,	&Receiver::slot,	Qt::QueuedConnection);

class://::qRegisterMetaType


QObject:	queued	connections	example

Thread	safety	in	Qt p.34

1 class	MyThread	:	public	QThread	{
2     Producer	*m_producer;
3 public:
4     explicit	MyThread(Producer	*p,	QObject	*parent	=	nullptr)
5         :	QThread(parent),	m_producer(p)	{}
6
7     void	run()	override	{
8         Consumer	consumer;
9         connect(m_producer,	&Producer::unitProduced,
10                 &consumer,	&Consumer::consume);
11         exec();
12     }
13 };
14
15 //	in	main	thread:
16 auto	producer	=	new	Producer;
17 auto	thread	=	new	MyThread(producer);
18 thread->start();
19
20 //	Producer::unitProduced	gets	emitted	some	time	later	from	the	main	thread,
21 //	Consumer::consume	gets	run	in	the	secondary	thread



QObject:	queued	connections	example	(2)

Thread	safety	in	Qt p.35

1 //	Same	as	before,	but	without	the	race
2
3 auto	producer	=	new	Producer;
4 auto	consumer	=	new	Consumer;
5 auto	thread	=	new	QThread;
6
7 connect(m_producer,	&Producer::unitProduced,
8         consumer,	&Consumer::consume);
9 connect(thread,	&QThread::finished,
10         consumer,	&QObject::deleteLater);
11
12 consumer->moveToThread(thread);
13
14 thread->start();
15
16 //	Producer::unitProduced	gets	emitted	some	time	later	from	the	main	thread,
17 //	Consumer::consume	gets	run	in	the	secondary	thread



QObject:	queued	connections	example	(3)

Thread	safety	in	Qt p.36

1 class	MyThread	:	public	QThread	{
2 public:
3     explicit	MyThread(QObject	*parent	=	nullptr)
4         :	QThread(parent)	{}
5
6 private:
7     void	run()	override	{
8         emit	mySignal();
9     }
10
11 signals:
12     void	mySignal();
13 };
14
15 //	in	main	thread:
16 auto	thread	=	new	MyThread;
17 connect(thread,	&MyThread::mySignal,	receiver,	&Receiver::someSlot);
18 thread->start();



QObject:	queued	connections	example	(3)

Thread	safety	in	Qt p.36

1 class	MyThread	:	public	QThread	{
2 public:
3     explicit	MyThread(QObject	*parent	=	nullptr)
4         :	QThread(parent)	{}
5
6 private:
7     void	run()	override	{
8         emit	mySignal();
9     }
10
11 signals:
12     void	mySignal();
13 };
14
15 //	in	main	thread:
16 auto	thread	=	new	MyThread;
17 connect(thread,	&MyThread::mySignal,	receiver,	&Receiver::someSlot);
18 thread->start();

It	is	perfectly	OK	to	add	signals	to	QThread

The	connection	is	queued:	the	thread	that	emits	the	signal	is	not	the	thread
the	receiver	has	affinity	with

someSlot()	gets	invoked	by	the	main	thread's	event	loop

class://QThread
class://Receiver::someSlot


QObject:	queued	connections	example	(4)

Thread	safety	in	Qt p.37

1 class	MyThread	:	public	QThread	{
2     Socket	*m_socket;
3 public:
4     explicit	MyThread(QObject	*parent	=	nullptr)
5         :	QThread(parent)	{}
6
7 private:
8     void	run()	override	{
9         m_socket	=	new	Socket;
10         connect(m_socket,	&Socket::connected,	this,	&MyThread::onConnected);
11         m_socket->connectToHost(...);
12         exec();
13     }
14
15 private	slots:
16     void	onConnected()	{	qDebug()	<<	"Data	received:"	<<	m_socket->data();	}
17 };



QObject:	queued	connections	example	(4)

Thread	safety	in	Qt p.37

1 class	MyThread	:	public	QThread	{
2     Socket	*m_socket;
3 public:
4     explicit	MyThread(QObject	*parent	=	nullptr)
5         :	QThread(parent)	{}
6
7 private:
8     void	run()	override	{
9         m_socket	=	new	Socket;
10         connect(m_socket,	&Socket::connected,	this,	&MyThread::onConnected);
11         m_socket->connectToHost(...);
12         exec();
13     }
14
15 private	slots:
16     void	onConnected()	{	qDebug()	<<	"Data	received:"	<<	m_socket->data();	}
17 };

QThread	is	a	QObject	and	as	such	has	its	own	thread	affinity	(it's	the	thread
that	created	the	MyThread	instance,	not	itself!)

The	connection	is	queued:	the	thread	that	emits	the	signal	is	not	the	thread
the	receiver	has	affinity	with

This	is	not	what	we	wanted!

Huge	recommendation:	avoid	adding	slots	to	QThread

class://QThread
class://QObject
class://MyThread


Qt	and	the	Standard	Library	threading	facilities

Qt	and	the	Standard	Library	threading	facilities p.38

QThread

Synchronization

Thread	safety	in	Qt

Qt	and	the	Standard	Library	threading	facilities



General	remarks

Qt	and	the	Standard	Library	threading	facilities p.39

It	is	perfectly	possible	to	mix'n'match	Qt	and	std	threading	classes.

The	Standard	Library	is	moving	extremely	fast	and	Qt	will	not	(and	should
not)	catch	up	with	all	of	its	new	developments:
parallel	algorithms,	continuations,	latches,	barriers,	atomic	smart
pointers,	executors,	concurrent	queues,	distributed	counters,
coroutines,	...

More	and	more	tooling	will	start	checking	for	correct	usages	of	std	APIs,
but	not	Qt	ones	(unless	they	get	reimplemented	on	top	of	the	std	ones).

QThread	is	still	more	convenient	when	dealing	with	QObjects	and	event
loops.

A	comparison	of	the	APIs	is	in	the	next	slides.

class://std
class://std
class://std


QThread	vs.	std::thread

Qt	and	the	Standard	Library	threading	facilities p.40

QThread std::thread

No	need	to	subclass	it	in	order	to
use	it

	¹

Function	(job/task)	runner

Detach	support 	²

Interruption	request 	³

¹	only	if	we	go	for	a	signal/event-based	design,	which	likely	requires
subclassing	QObject

²	we	can	emulate	that	by	connecting	QThread::finished()	to
QThread::deleteLater()

³	as	shown	before,	it's	trivial	to	emulate

class://QThread
class://std::thread
class://QObject
class://QThread::finished
class://QThread::deleteLater


QThread	vs.	std::thread	(2)

Qt	and	the	Standard	Library	threading	facilities p.41

QThread std::thread

Event	loop	support 	¹

QObjects	can	be	created	into

QObjects	can	be	moved	to 	²

Signals	can	be	emitted	from

Slots	work	in	direct	connections

Slots	work	in	queued	connections

¹	But	we	can	use	QEventLoop	to	run	a	thread-local	event	loop

²	We	can	use	QThread::currentThread()	to	get	a	QThread	*	(to	move	a
QObject	to,	etc.)

class://QThread
class://std::thread
class://QObject
class://QObject
class://QEventLoop
class://QThread::currentThread
class://QThread *
class://QObject


Synchronization	primitives

Qt	and	the	Standard	Library	threading	facilities p.42

Qt Standard	Library

QMutex std::mutex
std::timed_mutex
std::recursive_mutex
std::recursive_timed_mutex

QSemaphore

QReadWriteLock std::shared_mutex
std::shared_timed_mutex

QWaitCondition std::condition_variable

std::call_once

Q_GLOBAL_STATIC

class://QMutex
class://std::mutex
class://std::timed_mutex
class://std::recursive_mutex
class://std::recursive_timed_mutex
class://QSemaphore
class://QReadWriteLock
class://std::shared_mutex
class://std::shared_timed_mutex
class://QWaitCondition
class://std::condition_variable
class://std::call_once
class://Q_GLOBAL_STATIC


Synchronization	primitives:	remarks

Qt	and	the	Standard	Library	threading	facilities p.43

QMutex	and	QReadWriteLock	are	faster	than	the	std	equivalents

A	non-recursive	QMutex	never	allocates	nor	throws	exceptions	on	Linux

QMutex	in	5.8	models	the	TimedLockable	concept
Can	be	used	together	with	std	lock	managers

No	std	compatibility	functions	in	QReadWriteLock	(yet)

std::condition_variable(_any)	more	generic	/	convenient	than
QWaitCondition
Supports	any	BasicLockable
Pass	predicate	to	test	in	wait()	call,	instead	of	using	the	mandatory
while	loop

Q_GLOBAL_STATIC	is	superseded	by	C++11's	semantics	for	thread-safe
function	statics	(and/or	std::call_once)

class://QMutex
class://QReadWriteLock
class://std
class://QMutex
class://QMutex
class://std
class://std
class://QReadWriteLock
class://std::condition_variable(_any)
class://QWaitCondition
class://std::condition_variable::wait
class://Q_GLOBAL_STATIC
class://std::call_once


Lock	management

Qt	and	the	Standard	Library	threading	facilities p.44

Qt Standard	Library

QMutexLocker std::lock_guard

QReadLocker std::shared_lock

QWriteLocker std::lock_guard

std::unique_lock

std::lock()

class://QMutexLocker
class://std::lock_guard
class://QReadLocker
class://std::shared_lock
class://QWriteLocker
class://std::lock_guard
class://std::unique_lock
class://std::lock


Lock	management:	remarks

Qt	and	the	Standard	Library	threading	facilities p.45

Standard	Library	lock	management	is	much	more	powerful	and	flexible

Movable	lock	guards	(std::unique_lock)	to	return	a	managed	lock

Lock	managers	also	have	timed	try_lock()s

Tag	classes	to	decide	what	a	lock	manager	should	do	with	the	lock

In	C++17	std::lock_guard	manages	multiple	locks	(in	a	deadlock-free
fashion)

QOrderedMutexLocker	is	C++17's	std::lock_guard	for	two	QMutexes
private	API

Unless	you're	dealing	with	QReadWriteLock,	prefer	the	std	alternatives

class://std::unique_lock
class://std::unique_lock::try_lock
class://std::lock_guard
class://QOrderedMutexLocker
class://std::lock_guard
class://QMutex
class://QReadWriteLock
class://std


Atomics

Qt	and	the	Standard	Library	threading	facilities p.46

Qt Standard	Library

QBasicAtomicInteger<T>
QAtomicInteger<T>
QAtomicInt
QBasicAtomicPointer<T>
QAtomicPointer<T>

std::atomic<T>

std::atomic_operation()

class://QBasicAtomicInteger<T>
class://QAtomicInteger<T>
class://QAtomicInt
class://QBasicAtomicPointer<T>
class://QAtomicPointer<T>
class://std::atomic<T>
class://std::atomic_<i>operation</i>
class://std::atomic_<i>operation</i>
class://std::atomic_<i>operation</i>


Atomics:	remarks

Qt	and	the	Standard	Library	threading	facilities p.47

Starting	with	Qt	5.7,	Qt	atomics	actually	uses	C++11	atomics	under	the
hood
Except	on	MSVC,	since	it	doesn't	(properly)	implement	them	yet

The	std	atomics	support	extra	(advanced)	features	compared	to	the	Qt
ones
Consume,	acq+rel	memory	ordering
Different	memory	orderings	available	for	success/failure	in	read-modify-
write	operations

The	non-member	atomic	operations	allow	for	generic	code	and
specializations
std::atomic_store(std::shared_ptr<T>	*p,	std::shared_ptr<T>	q)

If	you	do	use	atomics,	start	thinking	to	move	towards	the	Standard	Library

class://std


Thread-local	storage

Qt	and	the	Standard	Library	threading	facilities p.48

Qt Standard	Library

QThreadStorage thread_local

Same	functionality,	different	syntaxes

Both	lazy	initialized

QThreadStorage	allows	checking	/	skipping	initialization

class://QThreadStorage
class://thread_local
class://QThreadStorage


p.49

Questions?



Thank	you!

www.kdab.com

giuseppe.dangelo@kdab.com


