
Using	Virtual	Keyboards	on	Qt	Embedded	Devices

Jan	Arne	Petersen,	Senior	Software	Engineer	at	KDAB

What	is	needed

What	is	needed p.2

What	is	needed

What	is	provided	by	Qt

Use	Qt	input	method	API	in	Qt	applications

What	kind	of	text	needs	to	be	inputted?

What	is	needed p.3

Just	some	PIN	or	a	WLAN	password

Machine	name	or	simple	setup

Full	text	input	for	search	or	editing

Support	for	browser/3rd	party	applications

What	kind	of	embedded	device?

What	is	needed p.4

What	kind	of	screen?

What	hardware	button?

What	other	kinds	of	inputs?

What	is	provided	by	Qt

What	is	provided	by	Qt p.5

What	is	needed

What	is	provided	by	Qt
Input	Method	API
QPA	platforms
Qt	Virtual	Keyboard

Use	Qt	input	method	API	in	Qt	applications

What	is	provided	by	Qt

Input	Method	API p.6

Input	Method	API

QPA	platforms

Qt	Virtual	Keyboard

Qt	Input	Method	API

Input	Method	API p.7

Virtual	Keyboards	are	integrated	in	Qt	via	the	Input	Method	API:

QInputMethod	-	access	virtual	keyboard	from	application

QPlatformInputContext	-	virtual	keyboard	side

QInputMethodQueryEvent	-	send	information	from	application	to	virtual
keyboard

QInputMethodEvent	and	QKeyEvent	-	send	input	events	from	virtual
keyboard	to	application

Input	Methods	in	Qt	-	Overview

Input	Method	API p.8

What	is	provided	by	Qt

QPA	platforms p.9

Input	Method	API

QPA	platforms

Qt	Virtual	Keyboard

QPlatformInputContext

QPA	platforms p.10

Virtual	keyboard	side	of	API

Part	of	Qt	Platform	Abstraction

Two	kinds	of	QPlatformInputContext	for	virtual	keyboards
Native	provided	by	platform
Custom	via	QPlatformInputContextFactory

Native	Virtual	Keyboards

QPA	platforms p.11

Uses	the	virtual	keyboard	provided	by	the	system

Supported	QPA	platforms:
android
ios
qnx
wayland
windows

Custom	Virtual	Keyboards

QPA	platforms p.12

QPlatformInputContextFactory

Supported	QPA	platforms	(in	Qt	5.11):
bsdfb
cocoa
directfb/linuxfb
eglfs
integrity
mirclient
vnc
wayland
windows
xcb

QPlatformInputContextFactory

QPA	platforms p.13

Plugin	is	defined	via	QT_IM_MODULE

Input	context	creation	harmonized	in	Qt	5.6
null:	default	platform	context
empty:	no	context
set:	set	one,	if	it	exists	and	is	valid	(otherwise	no	context)

1 QString	icStr	=	QPlatformInputContextFactory::requested();
2 if	(!icStr.isNull())	{
3 mInputContext.reset(QPlatformInputContextFactory::create(icStr));
4 }	else	{
5 QPlatformInputContext	*ctx	=	new	QWaylandInputContext(mDisplay.data());
6 mInputContext.reset(ctx);
7 }

Wayland

QPA	platforms p.14

The	default	platform	context	uses	the	keyboard	provided	by	the
compositor	via	the	"text-input"	protocol

Next	official	version	in	wayland-protocol	will	be	"text-input-unstable-v3"

When	using	a	QtWayland	compositor	the	default	context	forwards	the	Qt
Input	Method	API	from	the	application	to	the	compositor	so	that	one	can
just	use	any	QPlatformInputContext	on	compositor	side

There	is	also	the	"input-method"	protocol	for	out-of-process	virtual
keyboards	(not	supported	in	QtWayland	yet)
1 import	QtQuick	2.0
2 import	QtWayland.Compositor	1.1
3
4 WaylandCompositor	{
5 ...
6 TextInputManager	{
7 }
8
9 }

Embedding	keyboard	in	application

QPA	platforms p.15

Some	virtual	keyboards	(like	Qt	Virtual	Keyboard)	allow	embedding	in	an
application

Especially	useful	for	platforms	without	multiple	window	management	like
eglfs

With	previously	mentioned	patch	it	can	be	used	in	a	QtWayland	compositor
to	embed	the	Qt	Virtual	Keyboard	in	the	compositor
1 import	QtQuick	2.5
2 import	QtQuick.VirtualKeyboard	2.1
3
4 InputPanel	{
5 id:	inputPanel
6 visible:	active
7 y:	active	?	parent.height	-	inputPanel.height	:	parent.height
8 anchors.left:	parent.left
9 anchors.right:	parent.right

10 }

Embedding	keyboard	in	QtWayland	compositor

QPA	platforms p.16

What	is	provided	by	Qt

Qt	Virtual	Keyboard p.17

Input	Method	API

QPA	platforms

Qt	Virtual	Keyboard

Qt	Virtual	Keyboard

Qt	Virtual	Keyboard p.18

Commercial	and	GPL

For	xcb	platform	it	displays	automatically	in	a	separate	window

For	other	QPA	platforms	it	allows	embedding	in	application	window

Uses	QML

Supports	multiple	languages	like:	English,	French,	German,	Russian,
Arabic,	...

Supports	Chinese,	Japanese	and	Korean

Supports	text	correction	(hunspell)

Supports	handwriting	(Lipi	toolkit)

Qt	Virtual	Keyboard

Qt	Virtual	Keyboard p.19

QT_IM_MODULE=qtvirtualkeyboard

Qt	Virtual	Keyboard

Qt	Virtual	Keyboard p.20

Supports	additional	commercial	engines

KDAB	worked	together	with	MyScript	and	The	Qt
Company	to	support	MyScript’s	 handwriting
input	technology	in	the	Qt	Virtual	Keyboard	for
the	Qt	Automotive	Suite.

Should	be	included	in	Qt	5.11

MyScript	background

Qt	Virtual	Keyboard p.21

Problems	to	solve
Overcome	the	HMI	Complexity
Decrease	the	Driver	Distraction

MyScript	at	a	glance
19	years	of	expertise
120	employees	o/w	25	PhDs	and	75	engineers
Over	400	M	users	in	the	world
Over	200	value	added	partners:	OEM,	ISV	and
System	Integrators
Millions	of	cars	on	the	road	use	MyScript
2007:	1st	Concept	Car	(Audi,	Tokyo	car	show)
2010:	1st	Car	on	the	road	with	the	Audi
2013:	1st	Mercedes
2014:	1st	Tesla
2015:	1st	Porsche	and	1st	VW
2016:	1st	OEM	Automotive	App	with	VW

MyScript	technology

Qt	Virtual	Keyboard p.22

The	Most	flexible	engine	with	carefree	writing	styles
Support	cursive	Latin	writing	in	all	languages

Automatic	space	insertion	between	words
Flexible	letter	alignment
Write	words	or	part	of	words	on	top	of	each	other
Same	engine	and	API	support	handwriting	recognition	and	keyboard
Transliteration
Prediction
Spelling	correction

Support	of	up	to	65	languages	for	word	recognition
99	languages	for	character-by-character	recognition

Today	supports	all	available	languages	of	the	Qt	virtual	keyboards

Use	Qt	input	method	API	in	Qt	applications

Use	Qt	input	method	API	in	Qt	applications p.23

What	is	needed

What	is	provided	by	Qt

Use	Qt	input	method	API	in	Qt	applications

Improve	the	user	experience

Use	Qt	input	method	API	in	Qt	applications p.24

Qt	input	fields	have	builtin	support	for	the	input	method	API	but	there	are
still	ways	for	application	developers	to	improve	the	user	experience	with
virtual	keyboards:

Define	purpose	of	text	input	fields
Alter	apperance	of	Return	key
Change	UI	depending	on	keyboard

Define	purpose	of	text	input	fields

Use	Qt	input	method	API	in	Qt	applications p.25

The	keyboard	can	change	the	layout	depending	on	the	purpose	of	the	text
field

For	example	entering	digits,	emails,	phone	numbers

Qt::InputMethodHints	enum	and	Qt::ImHints	Qt::InputMethodQuery

For	example:
Qt::ImhNone	-	No	hints
Qt::ImhHiddenText	-	The	input	method	should	not	show	the	characters
while	typing
Qt::ImhDigitsOnly	-	Only	digits	are	allowed
Qt::ImhFormattedNumbersOnly	-	Only	number	input	is	allowed
Qt::ImhDialableCharactersOnly	-	Only	characters	suitable	for	phone
dialing	are	allowed
Qt::ImhEmailCharactersOnly	-	Only	characters	suitable	for	email
addresses	are	allowed

Multiple	hints	can	be	combined.	For	example	for	password	fields:
Qt.ImhNoAutoUppercase	|	Qt.ImhNoPredictiveText	|	Qt.ImhSensitiveData
|	Qt.ImhHiddenText

Define	purpose	of	text	input	fields	-	example

Use	Qt	input	method	API	in	Qt	applications p.26

1 TextInput	{
2 id:	input
3
4 inputMethodHints:	Qt.ImhFormattedNumbersOnly
5 }

Alter	apperance	of	Return	key

Use	Qt	input	method	API	in	Qt	applications p.27

Can	be	used	to	display	alternative	key	instead	of	Return

Qt::EnterKeyType	enum	and	Qt::ImEnterKeyType	Qt::InputMethodQuery

For	example:
Qt::EnterKeyDone	-	Show	a	"Done"	button
Qt::EnterKeySend	-	Show	a	"Send"	button
Qt::EnterKeySearch	-	Show	a	"Search"	button
Qt::EnterKeyReturn	-	Show	a	Return	button	that	inserts	a	new	line
Qt::EnterKeyNext	-	Show	a	"Next"	button	which	should	be	used	to
navigate	to	next	input	field

Not	all	of	these	values	are	supported	on	all	platforms.	For	unsupported
values	the	default	key	will	be	used	instead.

Future	(Qt	5.11?):	Qt::ImEnterKeyLabel	and	Qt::ImEnterKeyEnabled

Alter	apperance	of	Return	key	-	Example

Use	Qt	input	method	API	in	Qt	applications p.28

1 TextInput	{
2 id:	input
3
4 EnterKey.type:	Qt.EnterKeySearch	//	Show	a	"Search"	button
5 }

Change	UI	depending	on	keyboard

Use	Qt	input	method	API	in	Qt	applications p.29

When	a	virtual	keyboard	is	shown	it	might	overlap	some	parts	of	the
application

In	particular	not	so	nice	to	overlap	the	focused	input	field

QInputMethod::visible	property	can	be	used	to	figure	out	if	a	virtual
keyboard	is	displayed

QInputMethod::keyboardRectangle	property	holds	the	virtual	keyboard's
geometry	in	window	coordinates

Questions

p.30

Questions

Maliit	Framework/Keyboard	(based	on	Ubuntu	Keyboard)

p.31

Open	Source:	LGPL-3

Keyboard	runs	in	a	separate	process

Uses	QML

Supports	multiple	languages	like:	English,	French,	German,	Russian,
Arabic,	...

Supports	Chinese,	Japanese,	Korean

Supports	text	correction	and	prediction

Maliit	Keyboard

p.32

Thank	you!

www.kdab.com

jan.petersen@kdab.com

