Christoph Sterz

QML-Driven HMI Architectures
” for Rolling Embedded Devices

> The Qt, OpenGL and C++ experts

What's the Difference?
e How Do We Fail Differently?

First Know the Rules ...
e ..then Break Them!

Turnkey Programming Setups
e & Fast Turnaround to Win the Game

The Qt, OpenGL and C++ experts

The Qt, OpenGL and C++ experts

4AKDAB

So what's the difference
with automotive devices?

. The Qt, OpenGL and C++ experts

Embedded '= Automotive
e

The Qt, OpenGL and C++ experts

4AKDAB

Embedded '= Automotive
®

® Platform Building
® Cross Compilation
® Hardware Limits
@ Custom Hardware
@ Fast Startup Times
@ Phone Integration
@ Multimedia

@ RT & Certification

The Qt, OpenGL and C++ experts

4AKDAB

Embedded '= Automotive
®

® Platform Building > AllDs become®s!

@ Cross Compilation % (E:xternaI.Appllcatlons
o ompositing

® Hardware Limits ® Hands-Free Interaction

(@ Custom Hardware ® Changing Environment

@ Fast Startup Times

@ Phone Integration significantly more screens

. . significantly more settings
@ Multimedia significantly larger team
@ RT & Certification significantly more parties

The Qt, OpenGL and C++ experts

Be aware of the increased size and complexity!
Projects like these have two new major problems:

Cross-Cutting Concerns
» Styling and customization

» Hardware variant modelling
» User & role management
» Searching

Interaction Between Parts
* Notifications and warnings
» Compositing/overlays

« Shared resources

« Data transfer

The Qt, OpenGL and C++ experts

Be aware of the increased size and complexity!
Projects like these have two new major problems:

Cross-Cutting Concerns
» Styling and customization

» Hardware variant modelling
» User & role management

Sad Fun Fact

These problems are most often
revealed at the end of the project

» Searching € X
Interaction Between Parts PR

* Notifications and warnings

» Compositing/overlays These are all contracting

. Shared resources forces and signs for a possibly

monolithic architecture

» Data transfer
The Qt, OpenGL and C++ experts

4KDAB

A Word on Styling
Think twice if you want to include styling into your framework!

* Only temporal changes should be done in QML ... but that’s not styling

* The rest should be done from the C++ side:
* Image providers
» Constants pushed from C++ side: colors | sizes | margins | components
» Retrigger all relevant bindings! Anchor changes are still a tricky issue

» Do not add styling by creating subclasses of a “god-styled component”
» Rather reload or instantiate a different component

¢

Think again if you want to include styling into your framework!

The Qt, OpenGL and C++ experts

Don’t create an “engineering style”

Do not factor in engineering styles into your QML components framework!
» Very tempting to add visual debug information to all components
» Often seen for layouting components, general item wrappers, grids
» Set to invisible, activated via keypress

» Semi-good workaround: loader for engineering information
* Solution: Just use GammaRay, please!l!!;)

m 4
[The Qt, OpenGL and C++ experts

4AKDAB

Filtering Functionality
Most of the customizations turn out to be constructible through filters

» Differing user roles and functionalities

 Think of all stakeholders: manufacturers | retailers | technicians

» Taxi lights, police radio integration, emergency sirens, ...
» Same is true for different car model configurations and software variants
» Use Repeaters, Loaders, ListViews, PathViews, and Instantiators

Car: Data Variant Role

The Qt, OpenGL and C++ experts

4AKDAB

Hardware Limitations
Expect your hardware to be slow ... but expect the unexpected!

Key pain points

* HMI startup

 Screen/view changes

» Background processes spinning up

» Spreading performance mistakes widely - “Death by 1000 Cuts”
» Classic example: QGraphicalEffects Shadow on all texts

There is no inherent algorithmic complexity in a Car HMI, not even in nav!

What kills you in the end is the footprint of memory, components, screens

The Qt, OpenGL and C++ experts

4AKDAB

Follow the path of memory
Trace the way of your visual assets at least one time from file to texture!

Designer

File

Board Storage

Memory

Texture

Screen
The Qt, OpenGL and C++ experts

4AKDAB

Follow the path of memory
Trace the way of your visual assets at least one time from file to texture!

Format? Channels? Quality?
£S? Block size? s it really an image?

Compression? _
Board Storage vmtouch? Loading order?
Decompression? Decoding?
0 Copy? Driver?

Pixmap cache? _
’ lexture D Fully shown? Effect precalc?

Interpolatlng behavior?

Screen

The Qt, OpenGL and C++ experts

4KDAB

HMIs have multiple applications
You are probably not going to implement that Japanese navigation by yourself ...

 Best Scenario: Suppliers/other teams also use Qt
» Otherwise: There are different options to compose applications
« X11
» Wayland
» Streaming textures with GPU extensions
* Weston VI

‘ If you are on Linux, best use Wayland!

The Qt, OpenGL and C++ experts

4AKDAB

Qt supports you with multi-screen systems
main touch screen | instrument cluster | back seat entertainment
Enabling global animations and events among these screens is hard

Maintainance of Granularity of
system cohesion communication

most Multiple Views ﬂie Signals & Events
Multiple Processes IPC (dbus, ...)

Multiple OS Instances Network
v Multiple HWSystems Network

least coarse

The Qt, OpenGL and C++ experts

4AKDAB

Car HMIs are multi-input-method applications

* Touch interaction is the first-class citizen in modern cars
» Complex gestures

* Does not allow for eyes-free interaction

 Physical input methods are spread over the interior of a vehicle
* More extreme in modern utility vehicles (cockpit situation)

* Voice input commands invoke Ul changes

* In QML, only focus and view stacking support external interaction

- Input event handling must enable state changes in the overall Ul
from the backend! (C++ side)

4

The Qt, OpenGL and C++ experts

4AKDAB

Auto & Embedded: You own and know the system!

* The backend is formable to serve the HMI
* Event rates, types, and notifications
* There can be intercommunication for deferred services

» Slim out your OS’s/service’s startup sequence
* |t is possible to set and alter process priorities
» Boost foreground priorities?

» systemd becoming the standard
» Manage dependencies of services
* Set group rights and quotas

4

The Qt, OpenGL and C++ experts

4AKDAB

First Know The Rules ...
... Then Break Them!

. The Qt, OpenGL and C++ experts

But first know the rules!

» Structure your C++ around the data from your backend
» Generate and filter
» EXpose models and constants to QML
» Logical transitions happen here

» Structure your QML visually
» Think in terms of screens and pixels
* Do not think in terms of functionality here
* Visually temporal transitions happen here

‘ Reinvent the wheel after you have tried Qt's wheel. And Qt offers many wheels ;)

The Qt, OpenGL and C++ experts

4AKDAB

Don’t create what you won’t show!
Everything that takes less than 16 ms to create should be put behind a loader!

» With precompiled gmlc, it becomes tempting to load every screen upfront
» Reduces your times by about 50 %, but it’s still not free!

* Preloading your screens may trigger C++ code

* QML item creation bears hidden costs for
* image decompression and texture upload
» shader configuration and compilation

‘ » Critical startup phase becomes less deterministic, less analyzable

The Qt, OpenGL and C++ experts

Break the Rule: What to still load upfront

* Notifications and warnings
» Might be on top with negative z-ordering
* Invisible elements existing at all times

* Slide-Ins and Overlays
* One singular virtual keyboard

e The “"next"” screen
‘ * In wizard-like situations

The Qt, OpenGL and C++ experts

4

Take vs. Make

 QMLShaderEffects are often slow
» custom OpenGL-based QQuickltems
* Don’'t cascade ShaderEffects

* Investigate if ParticleEffects can be replaced

» Trade-off between prerendered images and effects
» Sometimes even complex effects are faster than multiple images
* Prebaked image sequences can decrease the memory bandwidth

* QML introduced Shapes in 5.10. This can help reduce images further

The Qt, OpenGL and C++ experts

4KDAB

Stable vs. New

» Automotive usually settles on a fixed Qt version
* Long Term Support | Stable version | Well tested
» But most projects take more than a year from first plan to SOP!

* |If there is the option to switch to a new LTS, switch!
* Improved performance
» Reduce workarounds and pain points
* Fairly backwards-compatible: easily portable within major version

There are successful embedded projects with open source GPU drivers!

The Qt, OpenGL and C++ experts

Not everything will be Qt
But Qt IVI helps you cope with that

Checks
Type conversions
Polling

DE]I:

+ Libs and Drivers

4AKDAB

QT IVI
» “Rich"” types
* Value ranges
» Defaults
» Eases mocking
* Designed for QML use

— visit Mike Krus’s Talk!

The Qt, OpenGL and C++ experts

4AKDAB

ey Programming Setups
Turnaround to Win the Game

. The Qt, OpenGL and C++ experts

Have your tools ready at the “fanout”
» Here, all mistakes become much more costly
* Every error hit multiplies costs
» Every second waited multiplies costs

N

Planning team
+ Core team

+ All developers + outsourcers

The Qt, OpenGL and C++ experts

Let your
gml-example build tOOI,
deploy tool,
[:| , and run tool
be this!

Profile

P

I L. Type to locate (Ctrl+K) 1 Issues 2 Search Results 3 Applic:

A typical 2017 automotive SDK & setup
Usually contains this

C++/Qt Linux VCS/CI

(custom) Qt (Yocto-built) Git (¢ submods)
QtCreator Dev version Squish Cl
Static checkers Trace version Regular CI
Product version

Valgrind
Emulator

GammaRay perf + hotspot

Visit Volker Krause’s Talk!
The Qt, OpenGL and C++ experts

4AKDAB

No hardware available (yet)? No Problem!
With QtAutomotiveSuite’s emulator!

» Most drastic hardware limitation is to have no hardware
 Qt is your friend for cross-platform development
» Develop on desktop, deploy to target
» Supports emulating the target even with simulated hardware knobs

» Tooling Like QtCreator's DebugMode and GammaRay work from desktop!
* In principle: Connecting to shared or remote HW prototypes is possible

‘ » QtAutomotiveSuite comes with 20 ready-to-run images for common boards

The Qt, OpenGL and C++ experts

4AKDAB

Have fast deployment cycles
Every second waited here is worth eliminating

» When finding a complex bug, deployment will be done hundreds of times
* Differential updates
* Instant navigation to the problems screen
* Have a backend-enabled boilerplate application
» Evaluate reloading components live or try out QmlLive

* Delays hinder willingness to try something new

* This is also true for device flashing
* Find a fast and reliable mechanism to flash hardware images

The Qt, OpenGL and C++ experts

4KDAB

Make quick experiments possible to everyone

» Enable all devs to quickly request or create environments to test upon
* Have a fixed naming scheme for these variants:

Linux 4.13, Backend version 12, Qt 5.9 + Patches, HMI nightly

» Result is a hardware/emulator image!
» With Yocto, this can even be automated!

» Allows for pretests for upcoming backend versions

oge should take 1 day max.

The Qt, OpenGL and C++ experts

Don’t Invent Your Own
Build System!

Use something widely used and cross-platform!

The Qt, OpenGL and C++ experts

What's the Difference?
e How Do We Fail Differently?

First Know the Rules ...
e ..then Break Them!

Turnkey Programming Setups
e & Fast Turnaround to Win the Game

The Qt, OpenGL and C++ experts

Thank you!

christoph.sterz@kdab.com

The Qt, OpenGL and C++ experts

