Christoph Sterz

QML-Driven HMI Architectures
” for Rolling Embedded Devices

> The Qt, OpenGL and C++ experts



What's the Difference?
e How Do We Fail Differently?

First Know the Rules ...
e ..then Break Them!

Turnkey Programming Setups
e & Fast Turnaround to Win the Game
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So what's the difference
with automotive devices?
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Embedded '= Automotive
e
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Embedded '= Automotive
®

® Platform Building
® Cross Compilation
® Hardware Limits
@ Custom Hardware
@ Fast Startup Times
@ Phone Integration
@ Multimedia

@ RT & Certification
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Embedded '= Automotive
®

® Platform Building > AllDs become®s!

@ Cross Compilation % (E:xternaI.Appllcatlons
o ompositing

® Hardware Limits ® Hands-Free Interaction

(@ Custom Hardware ® Changing Environment

@ Fast Startup Times

@ Phone Integration significantly more screens

. . significantly more settings
@ Multimedia significantly larger team
@ RT & Certification significantly more parties
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Be aware of the increased size and complexity!
Projects like these have two new major problems:

Cross-Cutting Concerns
» Styling and customization

» Hardware variant modelling
» User & role management
» Searching

Interaction Between Parts
* Notifications and warnings
» Compositing/overlays

« Shared resources

« Data transfer
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Be aware of the increased size and complexity!
Projects like these have two new major problems:

Cross-Cutting Concerns
» Styling and customization

» Hardware variant modelling
» User & role management

Sad Fun Fact

These problems are most often
revealed at the end of the project

» Searching € X
Interaction Between Parts PR

* Notifications and warnings

» Compositing/overlays These are all contracting

. Shared resources forces and signs for a possibly

monolithic architecture

» Data transfer
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A Word on Styling
Think twice if you want to include styling into your framework!

* Only temporal changes should be done in QML ... but that’s not styling

* The rest should be done from the C++ side:
* Image providers
» Constants pushed from C++ side: colors | sizes | margins | components
» Retrigger all relevant bindings! Anchor changes are still a tricky issue

» Do not add styling by creating subclasses of a “god-styled component”
» Rather reload or instantiate a different component

¢

Think again if you want to include styling into your framework!
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Don’t create an “engineering style”

Do not factor in engineering styles into your QML components framework!
» Very tempting to add visual debug information to all components
» Often seen for layouting components, general item wrappers, grids
» Set to invisible, activated via keypress

» Semi-good workaround: loader for engineering information
* Solution: Just use GammaRay, please!l!!;)

m 4
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Filtering Functionality
Most of the customizations turn out to be constructible through filters

» Differing user roles and functionalities

 Think of all stakeholders: manufacturers | retailers | technicians

» Taxi lights, police radio integration, emergency sirens, ...
» Same is true for different car model configurations and software variants
» Use Repeaters, Loaders, ListViews, PathViews, and Instantiators

Car: Data Variant Role
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Hardware Limitations
Expect your hardware to be slow ... but expect the unexpected!

Key pain points

* HMI startup

 Screen/view changes

» Background processes spinning up

» Spreading performance mistakes widely - “Death by 1000 Cuts”
» Classic example: QGraphicalEffects Shadow on all texts

There is no inherent algorithmic complexity in a Car HMI, not even in nav!

What kills you in the end is the footprint of memory, components, screens
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Follow the path of memory
Trace the way of your visual assets at least one time from file to texture!

Designer

File

Board Storage

Memory

Texture

Screen
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Follow the path of memory
Trace the way of your visual assets at least one time from file to texture!

Format? Channels? Quality?
£S? Block size? s it really an image?

Compression? _
Board Storage vmtouch? Loading order?
Decompression? Decoding?
0 Copy? Driver?

Pixmap cache? _
’ lexture D Fully shown? Effect precalc?

Interpolatlng behavior?

Screen
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HMIs have multiple applications
You are probably not going to implement that Japanese navigation by yourself ...

 Best Scenario: Suppliers/other teams also use Qt
» Otherwise: There are different options to compose applications
« X11
» Wayland
» Streaming textures with GPU extensions
* Weston VI

‘ If you are on Linux, best use Wayland!
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Qt supports you with multi-screen systems
main touch screen | instrument cluster | back seat entertainment
Enabling global animations and events among these screens is hard

Maintainance of Granularity of
system cohesion communication

most Multiple Views ﬂie Signals & Events
Multiple Processes IPC (dbus, ...)

Multiple OS Instances Network
v Multiple HWSystems Network

least coarse
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Car HMIs are multi-input-method applications

* Touch interaction is the first-class citizen in modern cars
» Complex gestures

* Does not allow for eyes-free interaction

 Physical input methods are spread over the interior of a vehicle
* More extreme in modern utility vehicles (cockpit situation)

* Voice input commands invoke Ul changes

* In QML, only focus and view stacking support external interaction

- Input event handling must enable state changes in the overall Ul
from the backend! (C++ side)

4
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Auto & Embedded: You own and know the system!

* The backend is formable to serve the HMI
* Event rates, types, and notifications
* There can be intercommunication for deferred services

» Slim out your OS’s/service’s startup sequence
* |t is possible to set and alter process priorities
» Boost foreground priorities?

» systemd becoming the standard
» Manage dependencies of services
* Set group rights and quotas

4
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First Know The Rules ...
... Then Break Them!
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But first know the rules!

» Structure your C++ around the data from your backend
» Generate and filter
» EXpose models and constants to QML
» Logical transitions happen here

» Structure your QML visually
» Think in terms of screens and pixels
* Do not think in terms of functionality here
* Visually temporal transitions happen here

‘ Reinvent the wheel after you have tried Qt's wheel. And Qt offers many wheels ;)

The Qt, OpenGL and C++ experts



4AKDAB

Don’t create what you won’t show!
Everything that takes less than 16 ms to create should be put behind a loader!

» With precompiled gmlc, it becomes tempting to load every screen upfront
» Reduces your times by about 50 %, but it’s still not free!

* Preloading your screens may trigger C++ code

* QML item creation bears hidden costs for
* image decompression and texture upload
» shader configuration and compilation

‘ » Critical startup phase becomes less deterministic, less analyzable
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Break the Rule: What to still load upfront

* Notifications and warnings
» Might be on top with negative z-ordering
* Invisible elements existing at all times

* Slide-Ins and Overlays
* One singular virtual keyboard

e The “"next"” screen
‘ * In wizard-like situations
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Take vs. Make

 QMLShaderEffects are often slow
» custom OpenGL-based QQuickltems
* Don’'t cascade ShaderEffects

* Investigate if ParticleEffects can be replaced

» Trade-off between prerendered images and effects
» Sometimes even complex effects are faster than multiple images
* Prebaked image sequences can decrease the memory bandwidth

* QML introduced Shapes in 5.10. This can help reduce images further
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Stable vs. New

» Automotive usually settles on a fixed Qt version
* Long Term Support | Stable version | Well tested
» But most projects take more than a year from first plan to SOP!

* |If there is the option to switch to a new LTS, switch!
* Improved performance
» Reduce workarounds and pain points
* Fairly backwards-compatible: easily portable within major version

There are successful embedded projects with open source GPU drivers!
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Not everything will be Qt
But Qt IVI helps you cope with that

Checks
Type conversions
Polling

DE]I:

+ Libs and Drivers

4AKDAB

QT IVI
» “Rich"” types
* Value ranges
» Defaults
» Eases mocking
* Designed for QML use

— visit Mike Krus’s Talk!
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ey Programming Setups
Turnaround to Win the Game
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Have your tools ready at the “fanout”
» Here, all mistakes become much more costly
* Every error hit multiplies costs
» Every second waited multiplies costs

N

Planning team
+ Core team

+ All developers + outsourcers
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Let your
gml-example build tOOI,
deploy tool,
[:| , and run tool
be this!

Profile

P

I L. Type to locate (Ctrl+K) 1 Issues 2 Search Results 3 Applic:



A typical 2017 automotive SDK & setup
Usually contains this

C++/Qt Linux VCS/CI

(custom) Qt (Yocto-built) Git (¢ submods)
QtCreator Dev version Squish Cl
Static checkers Trace version Regular CI
Product version

Valgrind
Emulator

GammaRay perf + hotspot

Visit Volker Krause’s Talk!
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No hardware available (yet)? No Problem!
With QtAutomotiveSuite’s emulator!

» Most drastic hardware limitation is to have no hardware
 Qt is your friend for cross-platform development
» Develop on desktop, deploy to target
» Supports emulating the target even with simulated hardware knobs

» Tooling Like QtCreator's DebugMode and GammaRay work from desktop!
* In principle: Connecting to shared or remote HW prototypes is possible

‘ » QtAutomotiveSuite comes with 20 ready-to-run images for common boards
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Have fast deployment cycles
Every second waited here is worth eliminating

» When finding a complex bug, deployment will be done hundreds of times
* Differential updates
* Instant navigation to the problems screen
* Have a backend-enabled boilerplate application
» Evaluate reloading components live or try out QmlLive

* Delays hinder willingness to try something new

* This is also true for device flashing
* Find a fast and reliable mechanism to flash hardware images
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Make quick experiments possible to everyone

» Enable all devs to quickly request or create environments to test upon
* Have a fixed naming scheme for these variants:

Linux 4.13, Backend version 12, Qt 5.9 + Patches, HMI nightly

» Result is a hardware/emulator image!
» With Yocto, this can even be automated!

» Allows for pretests for upcoming backend versions

oge should take 1 day max.
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Don’t Invent Your Own
Build System!

Use something widely used and cross-platform!
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What's the Difference?
e How Do We Fail Differently?

First Know the Rules ...
e ..then Break Them!

Turnkey Programming Setups
e & Fast Turnaround to Win the Game
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Thank you!

christoph.sterz@kdab.com
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