
p.1

Two	way	bindings:	Component	Design	in	QtQuick
Qt	World	Summit,	2019

Presented	by	André	Somers

Qt	World	Summit	2019	Berlin



p.2

Introduction

Introduction

Introduction

p.3

Introduction

Introduction

In	a	well-designed	application:

The	UI	is	built	using	re-usable	components

The	data	and	logic	live	in	C++	controllers

The	QML	part	of	the	application	uses	these	components	to	build	the	UI	and
connects	them	to	the	controllers.	The	controllers	provide	the	data	and
receive	input	from	the	UI.

p.4

Demo:	Checkbox

Introduction

We	have:

A	controller	written	in	C++

A	Checkbox	component	we	want	to	hook	up

A	main	qml	file	using	the	Checkbox	and	a	button	to	reset	the	controllers
state.

Demo:	qml-component-design/ex-basic-checkbox

p.5

Problems

Introduction

If	you	have	components	that	both	show	a	state	and	allow	the	user	to
manipulate	that	state,	how	do	you	design	it	so	that:

1.	it	has	good	API,

2.	data	input	gets	sent	to	the	controller,	and

3.	bindings	set	on	its	properties	don't	break?



p.6

Further	considderations

Introduction

It	gets	worse...	How	do	you	deal	with	situations	where:

the	backend	may	reject	the	change	request?

the	backend	may	be	slow	to	respond	to	the	request?

p.7

Non-solutions

Non-solutions

Non-solutions

p.8

What	doesn't	work...

Non-solutions

What	does	not	work:

Explicitly	re-create	the	binding

Aliased-in	Value

Model
1 class	BooleanValue	:	public	QObject
2 {
3     Q_OBJECT
4     Q_PROPERTY(bool	isOn	READ	isOn	WRITE	setOn	NOTIFY	isOnChanged)
5
6 public:
7     explicit	BooleanValue(QObject	*parent	=	nullptr);
8     explicit	BooleanValue(bool	initValue,	QObject	*parent	=	nullptr);
9
10     bool	isOn()	const;
11     Q_SLOT	void	setOn(bool	isOn);	//	Be	sure	to	make	it	a	slot	or	Q_INVOKABLE
12
13     //convenience	API	is	now	possible
14     Q_INVOKABLE	void	toggle();
15
16 signals:
17     void	isOnChanged(bool	isOn);
18
19 private:
20     bool	m_isOn	=	false;
21 };

p.9

Proposed	Value	approach

Proposed	Value	approach

Proposed	Value
approach



p.10

Using	a	proposed	value

Proposed	Value	approach

Idea:	control	does	not	update	the	main	state

Instead	of	trying	to	update	the	value	property,	we	only	propose	a	new
value.

The	new	proposed	value	is	only	set	on	the	control	again	via	the	binding	on
the	value	property	set	by	the	user.
1 CheckBox	{
2     id:	colorCheckbox
3     checked:	SomeController.isBlue
4     onProposedChecked:	SomeController.isBlue	=	proposedChecked;
5 }

Simple	property	on	controller	again

The	component	will	not	change	the	value	property	by	itself

Bind	as	normal	at	the	usage	site

Return	connection	from	explicit	"proposed"	value

Proposed	value	can	either	be	a	signal	or	a	property.

Demo:	qml-component-design/ex-proposed-value
p.11

Using	a	proposed	value	(cont'd)

Proposed	Value	approach

+	Simple

+	Flexible,	possible	to	extend	on	the	side	of	the	component	with	first
showing	the	proposed	state	and	then	reverting	if	the	backend	doesn't
update

+	Lightweight,	no	additional	objects	needed

-	Only	works	on	your	own	controls

-	Easy	to	get	wrong	by	accident

-	Replicate	handling	of	unresponsive	backend	for	every	control	(if	needed)

-	Different	than	standard	component	behavior

Verdict:	Quite	a	good	solution

p.12

Unbreakable	Binding	approach

Unbreakable	Binding	approach

Unbreakable	Binding
approach

p.13

Unbreakable	binding	approach

Unbreakable	Binding	approach

Idea:	Learn	from	Qt's	own	components	and	avoid	breaking	the	binding.
What	if	we	actually	can	change	the	value	yet	keep	the	binding	intact?	That	is
possible	if	we	move	the	value	from	a	simple	property	in	the	QML	component
to	a	dedicated	C++	component.

1 CheckBox	{
2     checked:	SomeController.isBlue
3     onCheckedChanged:	SomeController.isBlue	=	checked
4 }
5
6 Rectangle	{
7     id:	colorIndicator
8     color:	SomeController.isBlue	?	"blue"	:	"red"
9 }

Simple	property	on	controller	again

Bind	as	normal	at	the	usage	site
Binding	will	not	break

Return	connection	from	value	property	itself

Demo:	qml-component-design/ex-unbreakable-binding



p.14

Unbreakable	binding	approach	(cont'd)

Unbreakable	Binding	approach

Control	internally	uses	C++	object	to	keep	state
Avoids	overwriting	the	property	directly
Uses	Q_INVOKABLE	methods	or	slots	on	the	object	instead.

1 import	KDAB.Components	1.0
2
3 Item	{
4     id:	root
5
6     property	alias	checked:	internal.isOn
7     property	alias	text:	label.text
8
9     //ui	related	code
10     Rectangle	{	~~~	}
11
12     BooleanValue	{
13         id:	internal
14     }
15
16     MouseArea	{
17         anchors.fill:	parent
18         onClicked:	{
19             internal.toggle();	//	works,	using	convenience	function	on	BooleanValue
20             //	internal.setOn(!internal.isOn)	//	works	too
21             //	internal.isOn	=	!internal.isOn	//	Wrong:	breaks	the	binding
22         }
23     }
24 }

p.15

Unbreakable	binding	approach	(cont'd)

Unbreakable	Binding	approach

+	Relatively	robust

+	Little	usage-side	code	needed

+	Flexible	in	the	way	you	setup	the	return	connection

+	Same	behavior	as	most	Qt	elements

-	Slightly	confusing	how	and	why	this	works

-	Possible	to	get	two	ends	of	binding	out	of	sync

Verdict:	Good	solution

p.16

Two	Way	Binding	approach

Two	Way	Binding	approach

Two	Way	Binding
approach

p.17

Two	Way	Binding	approach

Two	Way	Binding	approach

Idea:	Manage	the	sync	between	the	properties	ourselves
If	we	use	a	custom	component	to	manage	the	sync	of	the	properties	between
the	controller	and	the	component,	we	can	circumvent	the	issue	of	the
breaking	binding	by	not	using	one.

1 CheckBox	{
2     id:	colorCheckbox
3
4     TwoWayBinding	on	checked	{
5         backendObject:	SomeController
6         backendProperty:	"isBlue"
7     }
8 }

Simple	property	on	controller	again

Simple	property	on	the	component	again

At	usage	site,	use	TwoWayBinding	element	instead	of	a	normal	QML	binding

Demo:	qml-component-design/ex-two-way-binding



p.18

Two	Way	Binding	approach	(cont'd)

Two	Way	Binding	approach

The	TwoWayBinding	element:

Separate	element	that	keeps	two	objects	in	sync

Written	in	C++	as	any	other	custom	element

Basicly	simply	using	two	signal-slot	connections

The	on	property	syntax	support	is	a	bit	of	syntactic	sugar

No	binding	in	the	QML	sense	to	break.

p.19

Two	Way	Binding	approach	(cont'd)

Two	Way	Binding	approach

+	Explicit	in	expressing	intent

+	No	changes	needed	to	controls,	works	on	QML	native	elements

+	No	adaptations	to	controller	needed,	works	on	normal	properties

+	Extensible	with	policies

+	Hard	to	get	wrong,	easy	to	get	right

-	Burden	of	creating	the	connection	at	use	site,	so	a	bit	bloaty

-	2-part	and	string-based	API	to	identify	a	property	on	an	object	is	not	ideal.
It	is	used	in	QML	itself	too	though	(i.e.	Binding).

-	Limitations	apply,	like	no	support	for	binding	to	an	expression	(yet)

Verdict:	Good	solution

p.20

Conclusions

Conclusions

Conclusions

p.21

Conclusions

Conclusions

-	Explicitly	re-create	the	binding

-	Aliased-in	Value

-	Model

+	Proposed	Value

+	Unbreakable	Binding

+	Two-way	Binding



p.22

Questions?

Conclusions

Thank	you	for	your	time!
Contact	us:

http://www.kdab.com

KDToolbox:	http://www.github.com/kdab/kdtoolbox/

info@kdab.com

training@kdab.com

andre.somers@kdab.com

http://www.kdab.com
http://www.github.com/kdab/kdtoolbox/

