4

Model Models: Tools for Making Better Behaved Models
Qt World Summit, 2019

Presented by André Somers

Qt World Summit 2019 Berlin

The Qt, OpenGL and C++ Experts

p.1

Introduction / Model types

/!
/

| guesstimate that:

e = 90% of models are lists
Perhaps with different aspects of the items in different columns
Includes almost all QML-consumed models

* 9% are trees
¢ 0.9% are real spread-sheet like tables

¢ 0.1% really are hierarchical monsters

Introduction

i
Vi

Introduction p.2 Introduction p.3
,'/
QAIM APl requirements / Real live "solutions"
K
QAbstractltemModel requires very detailed change notification: Observed:
* Before and after e Simply doing a full model reset
AL Ao), (e e Partial solutions handling insert or removals, but doing emitting a blanket
« On changed dataChanged on the whole model
You often don't have all that from your data source... So how do you deal with * Messy, hand-crafted in-place code that still cuts a few corners...
?
Il e Lots of duplicating the above for code with multiple updatable models...
Ideal:
e Simple oneliner that can be re-used...
Introduction p.4 Introduction p.5

Towards a solution

Towards a solution

Towards a solution p.6

Basic algorithm

e Inputs:
lessThan
hasChanged

e Walk through input and exiting data at the same time
Using lessThan to see which one(s) to step

e Event-callbacks for needed inserts, removals, data updates
(and for equality too)
Event-callbacks handle actual update and model-signaling

Towards a solution p.8

Towards a solution

e Existing (stl) algorithms are not suitable:
No 'notifications'

¢ So define our own
Avoiding being dependent on container type or data type - templates!

e Basic assumptions:
List-like models

The model keeps a copy of the data internally in a random-access
container

The updated data is set as a single block

Both are sorted (or can be sorted) in the same way on some non-
changeable key

Towards a solution p.7

Basic algorithm (cont'd)

1 //precondition: src and target are both ordered with respect to lessThan
2 template<ForwardIt FwdIt, Container TargetCollection,

3 BinaryPredicate LessThan, BinaryPredicate HasChanged,

4 EventHandler OnChanged, EventHandler OnInsert, EventHandler OnRemove, EventHandler
5 void updateCollection(const FwdIt srcBegin, const FwdIt srcEnd, TargetCollection& target,
6 LessThan lessThan, HasChanged itemHasChanged,

7 OnChanged onChanged, OnInsert onInsert, OnRemove onRemove, OnEqual onE
8 {

9 auto srcIt = srcBegin;

10 auto targetIt = std::begin(target);

11

12 while (srcIt != srcEnd) {

13 if (targetIt == std::end(target)) {

14 //insert: src has still items left while target has no more items

15 -~~~}

16 } else if (lessThan(*srcIt, *targetIt)) {

17 //insert: src has one or more items that need to be inserted into target

18 auto srcInsertEnd = std::next(srcIt);

19 while (srcInsertEnd !'= srcEnd && lessThan(*srcInsertEnd, *targetIt)) {
20 srcInsertEnd++;
21 }
22 targetIt = onInsert(srcIt, srcInsertEnd, targetlt);
23 //targetIt now points to the item after the item(s) just inserted
24 srcIt = srcInsertEnd;
25 } else if (lessThan(*targetIt, *srcIt)) {
26 //removal: target has items that are not in src (any more), so remove them
27 == J}
28 } else {
29 //same item, check for changes
30 ==
31 } Towards a solution P9

Can we do better?

Much improved:

e Separate, readable blocks for comparing, detecting changes, inserting,
removing and updating

e No loops (well, almost)

e Still a lot of code

Integrate in QAbstractModel

7
/

e Subclass UpdatableModel<QTableModel> or
UpdatableModel<QListModel>

e Implement data(), flags, headerData, etc. as you normally would
Taking care to keep these fast, of course...

e Add a setData that takes a new collection with an updated data set

e Provide a lessThan
As something you can putin a std: : function
By reimplementing UpdateableModel: : lessThan, or
By providing an operator< for your DataType

e Provide a hasChanges

Must return a data structure that contains which columns and which
roles have changed

e Call updateData() from your setData and be done.

Towards a solution p.10
UpdateableModel usage
Towards a solution p.12

OCoONOOUS WN K

{

PR ER R ER e
ONOUPARWNHFOOWONOU A WNRE

UpdateableModel template (simplified)

//actual class to inherit from
template<QAIM BaseModel, typename DataType>
class UpdateableModel: public BaseModel

//can't use Q_OBJECT on templates

protected: //methods

template<ForwardIt Iterator, Container DataContainer, BinaryPredicate LessThan>
Operations updateData(Iterator srcBegin, Iterator srcEnd, DataContainer& targetContainer
LessThan lessThan, HasChangesFunction itemHasChanged)
{
Operations ops{0,0,0};

//events
auto onChanged = [this, &targetContainer, &ops](Iterator lhs, typename DataContainer

auto onInsert = [this, &targetContainer, &ops](Iterator lhsBegin, Iterator lhsEnd, t
auto onRemove = [this, &targetContainer, &ops](typename DataContainer::iterator rhsB

auto onEqual = [this](Iterator /*lhs*/, typename DataContainer::iterator /*rhs*/) {
flushCachedChanges() ;
I

updateCollection(srcBegin, srcEnd, targetContainer,
lessThan, itemHasChanged,
onChanged, onInsert, onRemove, onEqual);
flushCachedChanges() ;

return ops;

} .
Towards a solution p.11
template<ForwardIt Iterator, Container Data>

Resulting model update code

void ProcessModel::updateData(const ProcessList &processes)

const auto lessThan = [](const ProcessInfo& lhs, const ProcessInfo& rhs){return lhs.pid
const auto hasChanges = [](const ProcessInfo& lhs, const ProcessInfo& rhs){
DataChanges changes;
if (lhs.mem_res != rhs.mem res) {
changes.changedRoles += RoleNames: :MemRes;

if (lhs.mem_virt != rhs.mem_virt) {
changes.changedRoles += RoleNames::MemVirt;

}
if (!changes.changedRoles.isEmpty()) {
changes.changedColumns.append(0) ;

}

return changes;
+

auto changes = Base::updateData(processes.cbegin(), processes.cend(), m processes, lessT

Demo: talks/modelModels/ex-proper-update

Towards a solution p.13

Features Limitations

e Can take any forward-iteratable data structure for source data e Only supports list-like models, no trees

« Can deal with any storage container that: Mostly because there are no standard data structures for trees

Is forward-iteratable ¢ Only one set of changed roles per row

Supplies insert that takes an iterator range, a number of values (and a

copy) or a single value. SFINAE is used to select most efficient option. +/Data needs to be sorted by key

e Tries to emit as few signals as possible:
Inserts and removals in blocks if possible
dataChanged in blocks of columns

Subject to policy on how to merge rows

e Returns number of operations performed (inserts, removals & updates)

Towards a solution p.14 Towards a solution p.15
Sorting / QAIM limitations ~ /
QAIM does:
e Filtering
e Sorting

But how does it deal with changes
e in sort criteria (column or ascending/descending order)?
e in data affecting the sort order?

S O rti n g It uses the layoutChanged signal.

¢ No animations in QML.

Demo: talks/modelModels/ex-sorting-qsfpm

Sorting p-16 Sorting p.17

SortProxyModel

y
/

SortProxyModel reports changes in the order using row moves:
o for data changes
e for sort criteria changes

e drop-in replacement for QSortFilterProxyModel
for the sorting-part of its API

Demo: talks/modelModels/ex-sorting-sortproxymodel

7
/

Sorting p.18
Conclusions
e We can solve the issue of changing models in a generic way
Just not quite as a one-liner
... but close enough.
e QSortFilterProxyModel does not provide moves
We can implement our own though
Source code is available under a liberal license as part of the KDToolBox
github repository.
Conclusions p-20

Conclusions

4
/

Conclusions

Conclusions

Questions?

p.19

Thank you for your time!
Contact us:

o http://www.kdab.com

o KDToolbox: http://www.github.com/kdab/kdtoolbox/

e info@kdab.com
e training@kdab.com

e andre.somers@kdab.com

Conclusions

p.21

http://www.kdab.com
http://www.github.com/kdab/kdtoolbox/

