
KDAB | the Qt, OpenGL and C++ experts 1

The previous two parts of our three part
Qt 3D series focused on drawing a 3D model
and accepting user input, which are necessary
building blocks of 3D applications. For the
last part of our Qt 3D whitepaper series,
we’ll look at how to use Qt 3D and frame
graphs to create some really sophisticated-
looking graphics, including how to implement
multi-pass rendering.

Qt 3D’s rendering engine

To get the most out of the Qt 3D renderer, we
need to start by reviewing a few basics. Simply
put, the renderer’s job is to determine the color
of every pixel on the screen each time a new
frame is drawn.

The basic components that the renderer uses
are always the same: object geometries, object
materials/textures, shaders, and uniforms.
The geometry, materials, and textures control
the placement and appearance of each object
in a scene. Shaders are small programs that

Many 3D graphic visuals can be handled with the same no-frills
rendering techniques software developers learn during an intro
3D course. However, what if you want to incorporate one of many
advanced rendering techniques – effects like shadows, refractive
surfaces, water effects, HDR lighting, lens flares, or focus blurs?

Qt 3D Basics
Paul Lemire and Giuseppe D’Angelo

Part 3: Advanced Rendering

Ju
ly

 3

KDAB | the Qt, OpenGL and C++ experts 2

describe how to translate a combination of
attributes into a particular look, like how to
handle glossy, matte, or transparent materials.
Uniforms are variables the program passes to
a shader for controlling general aspects of the
program’s behaviour, like light sources, fog,
or focus effects. The renderer combines all of
these elements in various ways as part of a GPU
pipeline to specify the final look and feel of the
graphical composition.

The primary mechanism used by Qt 3D to
configure the graphical pipeline is the frame
graph. A frame graph contains a number of
nodes in a tree that define how the renderer
will draw a scene, and is defined by creating
a FrameGraph component. By customizing
and reordering nodes within the FrameGraph,
you can build the rendering algorithm of
your choice. This architecture allows Qt 3D’s
rendering to be infinitely extensible.

The benefits of FrameGraph

Since the frame graph tree is entirely data-
driven and can be modified dynamically at
runtime, it gives you a lot of flexibility. You can
use different frame graph trees for different
platforms and hardware, and select the most
appropriate at runtime. You can easily add and
enable visual debugging in a scene. You can use
different frame graph trees depending on what
you need to render for particular regions of the
scene. And finally, you can implement a new
rendering technique without having to modify
Qt 3D’s internals.

This is just a taste of what FrameGraph can do
– let’s dig into the details to see how it works.

FrameGraph operation

The FrameGraph renderer is simply configured
(relatively speaking) in QML (as well as in C++),
making it easy for graphics experts and non-
experts alike to modify a rendering technique.

Even though it may be easy to configure,
understanding a few important rules about how
it works is necessary if you want your renderings
to come out properly.

Depth-first traversal – The Qt 3D renderer
visits frame-graph nodes using a depth-first
traversal. That means a nested node will have
its children visited before its siblings, which can
make a significant difference in the rendered
output. We’ll look at some situations where
node order matters (as well as when it doesn’t)
a bit later on.

• RenderView construction – The renderer
constructs a RenderView for each leaf of
the node tree that it encounters during the
tree traversal. A RenderView contains all of
the rendering state information from each
leaf back to the tree’s root node.

• RenderCommand building – Once a
RenderView is created, the renderer adds
RenderCommands to the RenderView
to represent all the Entities within the
SceneGraph that require rendering.
RenderCommands are the translation
of the scene graph objects into whatever
OpenGL primitives (vertex arrays, shaders,
uniforms, meshes, etc) are necessary for
 the GPU to display the object.

• RenderView processing –
Each RenderView is processed by
OpenGL to turn its associated list of
RenderCommands into a frame buffer –
an in-memory representation of the
screen content.

• Frame buffer display – Once this process
is repeated for all of the nodes within the
frame graph, the frame is complete. At this
point, the renderer calls swapBuffers() to
exchange the newly drawn frame buffer with
the current screen content and readies itself
to be called for the next frame.

The FrameGraph renderer is simply configured in QML,
making it easy for graphics experts and non-experts alike.

KDAB | the Qt, OpenGL and C++ experts 3

Because the processing load is heavily
dependent on the total number of leaf nodes
in a frame graph tree, reducing the number of
leaf nodes to the absolute minimum required
will make your renderer configuration more
efficient. Moving state information that remains
constant across multiple nodes closer to the
frame graph tree’s root can also help you
optimize performance.

FrameGraph nodes

We’ve talked a bit about the nodes in a frame
graph tree. But what exactly is a node for?
Essentially, each node encapsulates a bit of
functionality required by the renderer at each
stage of execution. Qt 3D provides a number
of pre-defined frame graph nodes for use
in building your renderer. Although these
nodes are all subclasses of the C++ class,
Qt3D::QFrameGraphNode, they are accessible
in QML too. By combining these simple
node types it is often possible to configure
the renderer without writing a single line of
application-specific C++ rendering code.

FrameGraph Node Description

CameraSelector Sets a camera to perform the
rendering

ClearBuffers Specifies OpenGL buffers to be
cleared

LayerFilter Specifies entities to render
by filtering entities with a
matching layer component

RenderPassFilter Defines the filters used to
select a render pass in a
technique

RenderStateSet Sets various rendering states

RenderSurfaceSelector Specifies the surface to draw to

RenderTargetSelector Specifies the rendering target
(i.e. frame buffer)

SortPolicy Controls how rendering
commands are sorted

TechniqueFilter Defines the filters used to
select a technique in a material

Viewport Defines the rectangular
viewport where the scene is
drawn

List of frame graph nodes. Consult the Qt 3D documentation to see
additional node types not listed here.

Forward rendering

Let’s put some of our newfound frame graph
knowledge into practice by building a simple
renderer. One standard and straightforward
way to organize the graphical pipeline is called
forward rendering, which renders each object
into the frame buffer in final form. Forward
rendering uses a vertex -> fragment -> pixel
transformation process as follows:

1. Object vertices are transformed by the
viewer’s current viewport and viewing angle.
These vertices represent the visible triangle
meshes that wrap an object’s volume.
Triangles that face away from the viewer or are
outside the screen boundary are discarded.

2. Triangles are rasterized into many individual
fragments. Fragments are “hopeful” pixels
– they may or may not end up being
displayed, depending on the fragment
shader algorithm (which may choose to
discard the fragment), the fragment’s
transparency (which may make it invisible),
and the presence of other overlapping
objects (which may cover the fragment).

3. Fragment shaders operate on the fragments
to calculate their color and/or transparency,
based on surface texture, lighting, normal
(the surface’s angle to the light), and any
other variables the app may require.

4. The GPU finds the fragments at the same
pixel location sorted by distance from the
viewer and uses the closest fragment to
determine the final pixel color.

Incidentally, a forward renderer is the type of
renderer used by Qt Quick 2. Even though Qt
Quick 2 is limited to 2D, its content is rendered
in 3D to take advantage of OpenGL hardware
acceleration. Defining the frame graph needed
for a forward renderer is pretty simple,
especially in QML:

One standard way to organize the graphical pipeline is called
forward rendering, which renders each object into the frame
buffer in final form.

KDAB | the Qt, OpenGL and C++ experts 4

Code sample 1: forward renderer

/* Creates a frame graph tree with Viewport
| Clear Buffers | Camera */
RenderSettings {
 id: root
 activeFrameGraph: Viewport {
 normalizedRect: Qt.rect(0.0, 0.0, 1.0,
 1.0)
 property alias viewCamera:
 viewCameraSelector.camera
 ClearBuffers {
 buffers: ClearBuffers.
 ColorDepthBuffer
 CameraSelector {
 id: viewCameraSelector
 }
 }
 }
}

This resulting frame graph tree has three nodes
with a single leaf.

Resulting frame graph for Code sample 1

During the rendering process, this frame graph
tree creates a single RenderView that sets
the view port to fill the entire screen (using
normalized unit coordinates), clears the color
and depth buffers, and sets the camera to the
exposed camera property. If the state collected
at each leaf is the same between two frame
graph trees, the resulting renderer will create

visually identical results. As an example, here
are two additional frame graph configurations
that produce the same outcome as the
renderer in code sample 1.

Code sample 2: Another forward renderer
that works like Code sample 1

/* Swap camera and clear buffers: Viewport
| Camera | Clear Buffers */
RenderSettings {
 id: root
 activeFrameGraph: Viewport {
 normalizedRect: Qt.rect(0.0, 0.0, 1.0,
 1.0)
 property alias viewCamera:
 viewCameraSelector.camera
 CameraSelector {
 id: viewCameraSelector
 ClearBuffers {
 buffers: ClearBuffers.
 ColorDepthBuffer
 }
 }
 }
}

Code sample 3: Yet one more forward
renderer with the same result

/* An equivalent configuration: Camera |
Viewport | Clear Buffers */
RenderSettings {
 id: root
 activeFrameGraph: CameraSelector {
 id: viewCameraSelector
 Viewport {
 normalizedRect: Qt.rect(0.0, 0.0,
 1.0, 1.0)
 ClearBuffers {
 buffers: ClearBuffers.
 ColorDepthBuffer
 }
 }
 }
}

If the state collected at each leaf is the same between two
FrameGraph trees, the resulting renderer will create visually
identical results.

KDAB | the Qt, OpenGL and C++ experts 5

Multiple viewport rendering

A slightly more complex example of a renderer
draws a scene graph from four different
viewpoints, each in a separate quadrant of the
screen. This type of multi-viewpoint renderer
might make sense in any application that
requires multiple views of the same scene,
such as a CAD or 3D printing visualization tool,
a car racing game with a rear-view mirror, or a
security monitoring station.

Code sample 4: Multi-viewport renderer

RenderSettings {
 id: root
 activeFrameGraph: Viewport {
 id: mainViewport
 normalizedRect: Qt.rect(0, 0, 1, 1)
 ClearBuffers {
 buffers: ClearBuffers.
 ColorDepthBuffer
 }
 Viewport {
 id: topLeftViewport
 normalizedRect: Qt.rect(0, 0, 0.5,
 0.5)
 }
 Viewport {
 id: topRightViewport
 normalizedRect: Qt.rect(0.5, 0, 0.5,
 0.5)
 }
 Viewport {
 id: bottomLeftViewport
 normalizedRect: Qt.rect(0, 0.5, 0.5,
 0.5)
 }
 Viewport {
 id: bottomRightViewport
 normalizedRect: Qt.rect(0.5, 0.5,
 0.5, 0.5)
 }
 }
}

The frame graph tree for this example is a
bit more complex, resulting in five leaves and
five corresponding RenderView objects. The
following diagrams show the construction for
the first two RenderViews (the other three
RenderViews aren’t shown but are just like
the second RenderView albeit for the
remaining viewports).

Multi-viewport frame graph, ClearBuffers leaf

Multi-viewport frame graph, first viewport leaf

Although in our first example the nodes were
arbitrarily arranged, in this example the order
of the nodes matters a lot. If the ClearBuffers
node was at the end instead of at the beginning,
the rendering engine would create a black
screen – everything that was carefully drawn
would be erased as the last step. Similarly, the
ClearBuffers node couldn’t be at the root of
the frame graph tree or the screen would be
cleared before each viewport was rendered,
leaving only the last drawn viewport visible.

A slightly more complex example of a renderer draws a scene
graph from four different viewpoints, each in a separate
quadrant of the screen.

KDAB | the Qt, OpenGL and C++ experts 6

Resulting display of the multi-viewport renderer

Parallel processing

The declaration order for the frame graph
is important in specifying its behaviour but it
doesn’t imply a draw order. That’s because
Qt 3D can process each RenderView in
parallel, depending on the number of
available CPU cores.

Multi-viewport render views operating in parallel

Qt 3D uses a dedicated thread to submit the
work to the GPU. Although the generation
of render commands is done in parallel for
each render view, the thread submits OpenGL
commands to the GPU in an order that ensures
correct rendering.

Deferred rendering

A forward renderer really is best when your
lighting needs are simple. Scenes with multiple
lights, reflected or refracted light, shadows, or
other complexities in the light can be very tricky
to display with a forward renderer. That’s where
deferred rendering comes into play.

Deferred rendering takes multiple passes
through a scene. An early pass sets state
information such as normal vector, color,
depth, or position that the renderer will use
in subsequent passes. These pre-computed
values are not displayed but stored in a buffer
called the geometry buffer (or G-buffer) that
resides in a texture. Once the object meshes
have been drawn, the G-buffer contains
everything that can be seen by the current
camera. A second pass then renders the scene
to a buffer with the final colors computed from
the G-buffer information.

Visualization of referred renderer G-buffer
contents: diffuse color (top left), depth buffer

(top right), normal vectors (bottom left),
and world position (bottom right)

Complexities in light can be very tricky to display with a
forward renderer; that’s where deferred rendering comes
into play.

KDAB | the Qt, OpenGL and C++ experts 7

Output of deferred renderer’s second pass
that combines all G-buffer elements

Deferred rendering decouples the generation of
the scene’s geometry from any lighting effects
so that the geometry for each object is only
calculated once. Another advantage is that the
shading and lighting computations, which are
often complex, are dependent on the resolution
of the screen rather than the number of objects
in a scene. Deferred rendering does have some
drawbacks – it doesn’t handle transparency well,
it uses a lot of GPU memory bandwidth, and it
doesn’t play well with hardware anti-aliasing.
However, because this technique can easily
render many lights in a scene and handle object
shadowing it’s often a popular choice for games.

Code sample 5: Deferred renderer

Viewport {
 id: root
 normalizedRect : Qt.rect(0.0, 0.0, 1.0,
 1.0) ➊
 property GBuffer gBuffer
 property alias camera :
 sceneCameraSelector.camera
 // SceneEntities should reference one
 // of these to be incorporated into
 // correct layer
 readonly property Layer sceneLayer {}
 ➋

 readonly property Layer screenQuadLayer
 {}
 readonly property real windowWidth:
 surfaceSelector.surface !== null
 ? surfaceSelector.surface.width: 0
 readonly property real windowHeight:
 surfaceSelector.surface !== null ?
 surfaceSelector.surface.height: 0
 RenderSurfaceSelector {
 id: surfaceSelector
 // Fill G-Buffer
 LayerFilter {
 layers: sceneLayer
 RenderTargetSelector {
 id : gBufferTargetSelector ➌
 target: gBuffer
 ClearBuffers {
 buffers: ClearBuffers.
 ColorDepthBuffer ➍
 RenderPassFilter {
 id : geometryPass
 matchAny : FilterKey { name :
 "pass"; value : "geometry" }
 ➎
 CameraSelector {
 id :
 sceneCameraSelector ➏
 }
 }
 }
 }
 }
 TechniqueFilter {
 parameters: [
 Parameter { name: "color"; value :
 gBuffer.color },
 Parameter { name: "position"; value
 : gBuffer.position },
 Parameter { name: "normal"; value :
 gBuffer.normal },
 Parameter { name: "depth"; value :
 gBuffer.depth },
 Parameter { name: "winSize"; value
 : Qt.size(1024, 1024) }
]

Because deferred rendering can easily render many lights
in a scene and handle object shadowing, it’s often a popular
choice for games.

KDAB | the Qt, OpenGL and C++ experts 8

 RenderStateSet {
 // Render FullScreen Quad
 renderStates: [
 BlendEquation {
 blendFunction: BlendEquation.
 Add },
 BlendEquationArguments {
 sourceRgb:
 BlendEquationArguments.
 SourceAlpha; destinationRgb:
 BlendEquationArguments.
 DestinationColor }
]
 LayerFilter {
 layers: screenQuadLayer ➐
 ClearBuffers {
 buffers: ClearBuffers.
 ColorDepthBuffer ➑
 RenderPassFilter {
 matchAny : FilterKey { name :
 "pass"; value : "final" } ➒
 parameters: Parameter { name:
 "winSize"; value : Qt.size(
 windowWidth, windowHeight)
 }
 }
 }
 }
 }
 }
 }
}
The resulting frame graph tree looks like this:

Deferred renderer frame graph tree

The resulting renderer works like this, starting
with the first render view:

➊ Defines a viewport that fills the whole screen

➋ Defines our layers for use within subsequent
LayerFilter definitions

➌ Sets the G-buffer as the active render target

➍ Clears the color and depth on the G-buffer

➎ Selects only entities in the scene that have
a material and technique matching the render
pass filter (“geometry”)

➏ Specifies which camera should be used

Then the second render view:

➐ Selects all entities that have a layer
component matching screenQuadLayer

➑ Clears the color and depth buffers on the
currently bound frame buffer (the screen)

➒ Selects only entities in the scene that have a
material and technique matching the filter key in
the render pass filter (“final”)

Shadow rendering

Our last example is the most complex, building
on everything we’ve learned thus far. We’ll
be creating a renderer that can handle the
following scene, as well as all the code to create
(and animate) the objects within. The source
code for this example is in Qt Creator examples
under shadow-map-qml.

Renderer using shadow mapping

Shadow rendering, our last example, is the most complex,
building on everything we’ve learned thus far.

KDAB | the Qt, OpenGL and C++ experts 9

This example shows us how to render shadows.
It’s important to note that the trefoil knot and
the toy plane both cast shadows on themselves,
and the plane also casts a shadow on the knot.
How is this achieved within our renderer?
By using a shadow mapping technique – this
generates decent looking shadows without
introducing a large performance hit.

Shadow mapping is normally implemented
in two passes. The first pass generates the
shadow information by identifying fragments
on which the light is shining. The second
pass renders the scene objects and uses the
first pass shadow information to determine
appropriate lighting for each fragment.

The first pass needs to determine which
fragments are in a straight line from the light
source. To accomplish this, we draw the scene
with a camera at the light source – in other
words, in light space – viewing the scene from
the point-of-view of the light. We store the
distance of the fragments that are closest to
the light into a frame buffer object (FBO) with
a depth texture. (Since we aren’t drawing the
fragments at this point, our FBO doesn’t require
color information, just depth.) OpenGL depth
testing does exactly what we want here. Since
OpenGL will automatically track the depth of
the closest fragments, that gives us what we
need – the first fragment at each point in the
light space that’s closest to the light source.

 Shadow map – rendering the scene
from the light’s point-of-view

Fragments farther away will be occluded by
closer fragments and should display in shadow

The light’s point-of-view rendering is our
shadow map and only preserves the depth for
each fragment. Darker colors are closer to the
camera while lighter colors are farther away.
From the first screenshot’s perspective, the
light source (the “sun”) is outside the upper-
right corner of the viewport. That means that
the toy plane should be closer to the light
and hence, darker/closer in the shadow map –
and that’s exactly what we see in the shadow
map information.

Once the first pass has generated our shadow
map, we go to the second rendering pass to
draw our objects. We revert our viewport back
to the normal camera and draw all our objects
per usual. However, we can now incorporate
the shadow map information to determine if
the fragments are in light or shadow as we
draw them.

How we use the shadow map to identify if our
fragments are lit requires a bit of matrix math
– we have to remap the fragment’s location
back to its position in light space. Once we
have a light space coordinate for the fragment,
we refer back to the shadow map and compare
the fragment’s depth with the depth stored
in the shadow map. If the fragment depth is
greater (farther away) then the fragment is
hidden by a closer object and will be in shadow.
Otherwise, the fragment is the closest object to
the light and it should be lit.

With that understanding of the shadow
mapping technique, let’s look at the code
that implements it.

Setting up the scene

Before we worry about the details of
configuring our shadow renderer, let’s create
the scene with all the necessary objects.

Identifying if a fragment is lit or in shadow requires converting
the fragment position in world coordinates to its position in
light space.

KDAB | the Qt, OpenGL and C++ experts 10

Code sample 6: main.qml

import QtQuick 2.1 as QQ2
import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Input 2.0
import Qt3D.Extras 2.0
Entity {
 id: sceneRoot
 Camera { ➊
 id: camera

 projectionType: CameraLens.
 PerspectiveProjection
 fieldOfView: 45
 aspectRatio: _window.width /
 _window.height
 nearPlane: 0.1
 farPlane: 1000.0
 position: Qt.vector3d(0.0, 10.0, 20.0)
 viewCenter: Qt.vector3d(0.0, 0.0, 0.0)
 upVector: Qt.vector3d(0.0, 1.0, 0.0)
 }
 FirstPersonCameraController { camera:
 camera } ➋
 ShadowMapLight { ➌
 id: light
 }
 components: [
 ShadowMapFrameGraph { ➍
 id: framegraph
 viewCamera: camera
 lightCamera: light.lightCamera
 },
 // Event Source will be set by
 // the Qt3DQuickWindow
 InputSettings { }
]
 AdsEffect { ➎
 id: shadowMapEffect
 shadowTexture: framegraph.shadowTexture
 light: light
 }
 // Trefoil knot entity
 Trefoil { ➏
 material: AdsMaterial {

 effect: shadowMapEffect
 specularColor: Qt.rgba(0.5, 0.5, 0.5,
 1.0)
 }
 }
 // Toyplane entity
 Toyplane { ➐
 material: AdsMaterial {
 effect: shadowMapEffect

 diffuseColor: Qt.rgba(0.9, 0.5, 0.3,
 1.0)
 shininess: 75
 }
 }
 // Plane entity
 GroundPlane { ➑
 material: AdsMaterial {
 effect: shadowMapEffect
 diffuseColor: Qt.rgba(0.2, 0.5, 0.3,
 1.0)
 specularColor: Qt.rgba(0, 0, 0, 1.0)
 }
 }
}
➊ The first component we create is a Camera,
which represents the camera used for the final
rendering.

➋ We create a FirstPersonCameraController
element so we can control the camera using
a keyboard or mouse.

➌ Our light is created with a ShadowMapLight
entity, which represents our light sitting
somewhere above the plane and looking
down at the scene’s origin.

➍ We tie the light to our custom frame graph
ShadowMapFrameGraph.

➎ We set the rendering AdsEffect that is
responsible for doing the shadow rendering.

Finally, we create entities for the objects in the
scene: a trefoil knot ➏, a toy aircraft ➐, and the
2D plane representing the green ground ➑.

Classes needed for the shadow rendering example are in
main.qml: camera, controller, light, and rendering effects,
as well as knot, plane, and ground entities.

KDAB | the Qt, OpenGL and C++ experts 11

Setting the light

Now we need to define the light source.

Code sample 7: ShadowMapLight.qml

import Qt3D.Core 2.0
import Qt3D.Render 2.0
Entity {
 id: root
 property vector3d lightPosition:
 Qt.vector3d(30.0, 30.0, 0.0)
 property vector3d lightIntensity:
 Qt.vector3d(1.0, 1.0, 1.0)
 readonly property Camera lightCamera:
 lightCamera
 readonly property matrix4x4
 lightViewProjection:
 lightCamera.projectionMatrix.
 times(lightCamera.viewMatrix)
 Camera {
 id: lightCamera
 objectName: "lightCameraLens"
 projectionType: CameraLens.
 PerspectiveProjection
 fieldOfView: 45
 aspectRatio: 1
 nearPlane : 0.1
 farPlane : 200.0
 position: root.lightPosition
 viewCenter: Qt.vector3d(0.0, 0.0, 0.0)
 upVector: Qt.vector3d(0.0, 1.0, 0.0)
 }
}

The light is a directional spotlight. Since in the
first rendering pass we also need to use the
light as a camera, we place a Camera sub-
entity inside of it and expose it as a property.
The light also exposes properties for position,
color/intensity, and a transformation matrix.
The transformation matrix is used to allow us to
map fragments back to light space coordinates
so we can test our shadow map during the
second rendering pass.

Creating the frame graph

With the scene’s basic objects in place, it’s time
to create the frame graph that will configure our
renderer for shading.

Code sample 8:
ShadowMapFrameGraph.qml

import QtQuick 2.2 as QQ2
import Qt3D.Core 2.0
import Qt3D.Render 2.0
RenderSettings {
 id: root
 property alias viewCamera:
 viewCameraSelector.camera
 property alias lightCamera:
 lightCameraSelector.camera
 readonly property Texture2D
 shadowTexture: depthTexture
 activeFrameGraph: Viewport {
 normalizedRect: Qt.rect(0.0, 0.0, 1.0,
 1.0)
 RenderSurfaceSelector {
 RenderPassFilter {
 matchAny: [FilterKey { name:
 "pass"; value: "shadowmap" }]
 RenderTargetSelector {
 target: RenderTarget {
 attachments: [
 RenderTargetOutput {
 objectName: "depth"
 attachmentPoint:
 RenderTargetOutput.Depth
 ➊
 texture: Texture2D { ➋
 id: depthTexture
 width: 1024
 height: 1024
 format: Texture.
 DepthFormat
 generateMipMaps: false
 magnificationFilter:
 Texture.Linear
 minificationFilter:
 Texture.Linear

Because the light view is also needed as a camera for
the shadow renderer’s first pass, we add and expose
a Camera property to it.

KDAB | the Qt, OpenGL and C++ experts 12

 wrapMode {
 x: WrapMode.ClampToEdge
 y: WrapMode.ClampToEdge
 }
 comparisonFunction:
 Texture.CompareLessEqual
 comparisonMode: Texture.
 CompareRefToTexture
 }
 }
]
 }

 ClearBuffers {
 buffers: ClearBuffers.
 DepthBuffer
 CameraSelector { ➌
 id: lightCameraSelector
 }
 }
 }
 }

 RenderPassFilter {
 matchAny: [FilterKey { name:
 "pass"; value: "forward" }]
 ClearBuffers {
 clearColor: Qt.rgba(0.0, 0.4,
 0.7, 1.0)
 buffers: ClearBuffers.
 ColorDepthBuffer
 CameraSelector {
 id: viewCameraSelector
 }
 }
 }
 }
 }
}

We have two paths from the topmost Viewport
entity, and each path corresponds to a pass of
the shadow map technique.

Shadow map frame graph tree

One aspect of frame graphs that we’ve used
in earlier examples but haven’t yet addressed
in detail is filters. A filter entity allows you to
selectively enable or disable portions of the
frame graph tree using selector entities. In
our case, the two alternate paths for each
pass of the shadow renderer are enabled and
disabled using a RenderPassFilter. Our render
pass filter will filter based on a string we’ve
defined: in our case the string “pass”. This lets
us modify the frame graph configuration for
each pass appropriately. Other lines of interest
to highlight:

➊ In the first pass to generate the shadow map,
we need to render to an off-screen surface (our
FBO) with a depth texture attachment.

➋ The Texture2D entity configures the texture
storage that we use to keep the shadow map.

➌ We also need to render using the light’s
camera, so we set the CameraSelector entity
to the camera that our light exports.

The second pass is much more straightforward:
we simply render to the screen using the
main camera.

Filter entities allow you to selectively enable or disable
portions of the FrameGraph tree using selector entities.

KDAB | the Qt, OpenGL and C++ experts 13

The effect

The bulk of the work happens in the
AdsEffect.qml file, where our main Effect entity
is defined. The effect implemented is using the
ADS shading model (ambient diffuse specular,
in other words, Phong shading) with our
shadow-map generated shadows.

Code sample 9: AdsEffect.qml

import Qt3D.Core 2.0
import Qt3D.Render 2.0
Effect {
 id: root
 property Texture2D shadowTexture
 property ShadowMapLight light
 // These parameters act as default values
 // for the effect. They take priority
 // over any parameters specified in the
 // RenderPasses below (none provided in
 // this example). In turn these parameters
 // can be overwritten by specifying them
 // in a Material that references this
 // effect. The priority order is:
 //
 // Material -> Effect -> Technique ->
 // RenderPass -> GLSL default values
 parameters: [➊
 Parameter { name:
 "lightViewProjection"; value:
 root.light.lightViewProjection },
 Parameter { name: "lightPosition";
 value: root.light.lightPosition },
 Parameter { name: "lightIntensity";
 value: root.light.lightIntensity },
 Parameter { name: "shadowMapTexture";
 value: root.shadowTexture }
]
 techniques: [➋
 Technique {
 graphicsApiFilter {
 api: GraphicsApiFilter.OpenGL
 profile: GraphicsApiFilter.
 CoreProfile

 majorVersion: 3
 minorVersion: 2
 }
 renderPasses: [
 RenderPass { ➌
 filterKeys: [FilterKey { name:
 "pass"; value: "shadowmap" }] ➍
 shaderProgram: ShaderProgram {
 vertexShaderCode: loadSource(
 "qrc:/shaders/shadowmap.vert")
 fragmentShaderCode: loadSource(
 "qrc:/shaders/shadowmap.frag")
 }
 renderStates: [
 PolygonOffset { scaleFactor: 4;
 depthSteps: 4 },
 DepthTest { depthFunction:
 DepthTest.Less }
]
 },
 RenderPass {
 filterKeys: [FilterKey { name :
 "pass"; value : "forward" }] ➎
 shaderProgram: ShaderProgram {
 vertexShaderCode: loadSource(
 "qrc:/shaders/ads.vert")
 fragmentShaderCode: loadSource(
 "qrc:/shaders/ads.frag")
 }
 // no special render state set =>
 // use the default set of states
 }
]
 },
 Technique {
 graphicsApiFilter {
 api: GraphicsApiFilter.OpenGLES
 majorVersion: 3
 minorVersion: 0
 }
 renderPasses: [
 RenderPass {
 filterKeys: [FilterKey { name:
 "pass"; value: "shadowmap" }]

The Effect entity is implemented using Phong shading with
the ambient, diffuse, and specular components of light.

KDAB | the Qt, OpenGL and C++ experts 14

 shaderProgram: ShaderProgram {
 vertexShaderCode: loadSource(
 "qrc:/shaders/es3/shadowmap.vert")
 fragmentShaderCode: loadSource(
 "qrc:/shaders/es3/shadowmap.frag")
 }
 renderStates: [
 PolygonOffset { scaleFactor: 4;
 depthSteps: 4 },
 DepthTest { depthFunction:
 DepthTest.Less }
]
 },
 RenderPass {
 filterKeys: [FilterKey { name :
 "pass"; value : "forward" }]
 shaderProgram: ShaderProgram {
 vertexShaderCode: loadSource(
 "qrc:/shaders/es3/ads.vert")
 fragmentShaderCode: loadSource(
 "qrc:/shaders/es3/ads.frag")
 }
 }
]
 }
]
}
➊ The parameters list defines default values
for the effect. Those values are mapped to
OpenGL shader program uniforms so we can
access them within the shaders. What’s needed
in the shaders is information from the Light
entity (position, intensity, and its view/projection
matrix), as well as the shadow map texture
exposed by the frame graph.

➋ In order to be able to adapt the
implementation to different hardware or
OpenGL versions, an Effect is implemented
by providing one or more Technique elements.
In our case, we provide two techniques, one
for OpenGL 3.2 Core or greater and one for
OpenGL ES 3.0 or greater. (The two techniques
allow us to use customized shaders for each
platform since the GLSL variant is slightly

different between those two OpenGL versions.)

➌ Inside each technique we define our two
rendering passes. We set the filter values for
each so they’re associated with our frame graph
rendering passes.

➍ For the shadow map pass, we load GLSL
shaders that very simply project the mesh
coordinates from model space into clip space.
The fragment shader is empty because we
aren’t generating color information and OpenGL
will automatically capture the depth. We also set
some custom OpenGL states for polygon offset
(used to help prevent fragments from Z-fighting)
and depth testing (to make sure we’re properly
sorting objects front to back).

➎ The second pass is instead a normal forward
renderer using Phong shading. The code really
just loads the fragment and vertex shaders that
will be used when drawing.

The shaders

The full explanation of the shader code requires
some fluency in GLSL shader language and is
out of scope of this whitepaper. However, we
will point out the key parts that are necessary
to make our shadow mapper work.

Code sample 10: ads.vert

#version 150 core
in vec3 vertexPosition;
in vec3 vertexNormal;
out vec4 positionInLightSpace;
out vec3 position;
out vec3 normal;
uniform mat4 lightViewProjection;
uniform mat4 modelMatrix;
uniform mat4 modelView;
uniform mat3 modelViewNormal;
uniform mat4 mvp;
void main() {

You can customize shaders by using multiple Technique
elements, for example OpenGL versus OpenGL ES or
different versions of Open GL.

KDAB | the Qt, OpenGL and C++ experts 15

 const mat4 shadowMatrix =
 mat4(0.5, 0.0, 0.0, 0.0,
 0.0, 0.5, 0.0, 0.0,
 0.0, 0.0, 0.5, 0.0,
 0.5, 0.5, 0.5, 1.0); ➋
 positionInLightSpace = shadowMatrix *
 lightViewProjection * modelMatrix *
 vec4(vertexPosition, 1.0); ➊
 normal = normalize(modelViewNormal *
 vertexNormal);
 position = vec3(modelView *
 vec4(vertexPosition, 1.0));
 gl_Position = mvp * vec4(vertexPosition,
 1.0);
}

➊ Here is where we compute the coordinates
of each vertex in light space. We have to
adjust the coordinates slightly by multiplying
with shadowMatrix. ➋ This lets us convert
from normalized device coordinates (ranging
between -1 and 1) to texture map coordinates
(between 0 and 1) so we can easily look up
values in our shadow map during the fragment
shader. On to the fragment shader...

Code sample 11: ads.frag

#version 150 core
uniform mat4 viewMatrix;
uniform vec3 lightPosition;
uniform vec3 lightIntensity;
uniform vec3 ka; // Ambient reflectivity
uniform vec3 kd; // Diffuse reflectivity
uniform vec3 ks; // Specular reflectivity
uniform float shininess;
 // Specular shininess factor
uniform sampler2DShadow shadowMapTexture;
in vec4 positionInLightSpace;
in vec3 position;
in vec3 normal;
out vec4 fragColor;

vec3 dsModel(const in vec3 pos, const in
 vec3 n) ➍
{
 // Calculate the vector from the light
 // to the fragment
 vec3 s = normalize(vec3(viewMatrix *
 vec4(lightPosition, 1.0)) - pos);
 // Calculate the vector from the fragment
 // to the eye position (origin since this
 // is in "eye" or "camera" space)
 vec3 v = normalize(-pos);
 // Reflect the light beam using the
 // normal at this fragment
 vec3 r = reflect(-s, n);

 // Calculate the diffuse component
 float diffuse = max(dot(s, n), 0.0);
 // Calculate the specular component
 float specular = 0.0;
 if (dot(s, n) > 0.0)
 specular = pow(max(dot(r, v), 0.0),
 shininess);
 // Combine the diffuse and specular
 // contributions (ambient is taken
 // into account by the caller)
 return lightIntensity * (kd * diffuse
 + ks * specular);
 }
 void main() {
 float shadowMapSample =
 textureProj(shadowMapTexture,
 positionInLightSpace); ➊
 vec3 ambient = lightIntensity * ka;
 vec3 result = ambient;
 if (shadowMapSample > 0) ➋
 result += dsModel(position,
 normalize(normal)); ➌
 fragColor = vec4(result, 1.0);
}

The job of the fragment shader is conceptually
easy – map the current fragment back to the
shadow map, look up what’s in the shadow

Converting from normalized device coordinates to texture
map coordinates allows for easy shadow map value lookups
within the fragment shader.

KDAB | the Qt, OpenGL and C++ experts 16

About the KDAB Group

The KDAB Group is the world’s leading software
consultancy for architecture, development and
design of Qt, C++ and OpenGL applications
across desktop, embedded and mobile
platforms. KDAB is the biggest independent
contributor to Qt and is the world’s first ISO
9001 certified Qt consulting and development
company. Our experts build run-times, mix
native and web technologies, solve hardware

stack performance issues and porting problems
for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive
experience in creating, debugging, profiling and
porting complex applications help developers
worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide
market leading, hands-on, training for Qt,
OpenGL and modern C++ in multiple languages.
Founded in 1999, KDAB has offices throughout
North America and Europe.

www.kdab.com

© 2019 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks belong to their respective owners.

The flexibility of the Qt 3D renderer allows you to implement
many sophisticated effects.

map at that position, and if it’s positive the
fragment is on a lit surface so add in our lighting
component. That’s exactly what happens here:
we sample the shadow map ➊, and if it’s lit ➋,
we add in our light component ➌ using our
Phong lighting model.➍ Otherwise if it’s not
lit, the only lighting comes from our ambient
source.

Although there’s a decent amount of code in
this example to pull it off, this example shows
just how flexible and configurable the Qt 3D
rendering engine is.

Summary

The flexibility of the Qt 3D renderer allows you
to pretty easily experiment with a variety of
sophisticated effects. With this introduction to
frame graphs, frame graph nodes, and how the
frame graph tree operates, you’ll have some
idea about how the Qt 3D engine uses frame
graph and its assorted components to configure
renderers – and hopefully some idea of how
to go about building your own. However, if you
get stuck trying to implement some amazing-
looking new graphical technique, we’re always
happy to help!

