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The previous two parts of our three part  
Qt 3D series focused on drawing a 3D model 
and accepting user input, which are necessary 
building blocks of 3D applications. For the  
last part of our Qt 3D whitepaper series,  
we’ll look at how to use Qt 3D and frame  
graphs to create some really sophisticated-
looking graphics, including how to implement 
multi-pass rendering.

Qt 3D’s rendering engine

To get the most out of the Qt 3D renderer, we 
need to start by reviewing a few basics. Simply 
put, the renderer’s job is to determine the color 
of every pixel on the screen each time a new 
frame is drawn.

The basic components that the renderer uses 
are always the same: object geometries, object 
materials/textures, shaders, and uniforms. 
The geometry, materials, and textures control 
the placement and appearance of each object 
in a scene. Shaders are small programs that 
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describe how to translate a combination of 
attributes into a particular look, like how to 
handle glossy, matte, or transparent materials. 
Uniforms are variables the program passes to 
a shader for controlling general aspects of the 
program’s behaviour, like light sources, fog, 
or focus effects. The renderer combines all of 
these elements in various ways as part of a GPU 
pipeline to specify the final look and feel of the 
graphical composition.

The primary mechanism used by Qt 3D to 
configure the graphical pipeline is the frame 
graph. A frame graph contains a number of 
nodes in a tree that define how the renderer 
will draw a scene, and is defined by creating 
a FrameGraph component. By customizing 
and reordering nodes within the FrameGraph, 
you can build the rendering algorithm of 
your choice. This architecture allows Qt 3D’s 
rendering to be infinitely extensible.

The benefits of FrameGraph

Since the frame graph tree is entirely data-
driven and can be modified dynamically at 
runtime, it gives you a lot of flexibility. You can 
use different frame graph trees for different 
platforms and hardware, and select the most 
appropriate at runtime. You can easily add and 
enable visual debugging in a scene. You can use 
different frame graph trees depending on what 
you need to render for particular regions of the 
scene. And finally, you can implement a new 
rendering technique without having to modify 
Qt 3D’s internals.

This is just a taste of what FrameGraph can do 
– let’s dig into the details to see how it works.

FrameGraph operation

The FrameGraph renderer is simply configured 
(relatively speaking) in QML (as well as in C++), 
making it easy for graphics experts and non-
experts alike to modify a rendering technique. 

Even though it may be easy to configure, 
understanding a few important rules about how 
it works is necessary if you want your renderings 
to come out properly.

Depth-first traversal – The Qt 3D renderer 
visits frame-graph nodes using a depth-first 
traversal. That means a nested node will have 
its children visited before its siblings, which can 
make a significant difference in the rendered 
output. We’ll look at some situations where 
node order matters (as well as when it doesn’t) 
a bit later on.

• RenderView construction – The renderer 
constructs a RenderView for each leaf of 
the node tree that it encounters during the 
tree traversal. A RenderView contains all of 
the rendering state information from each 
leaf back to the tree’s root node.

• RenderCommand building – Once a 
RenderView is created, the renderer adds 
RenderCommands to the RenderView 
to represent all the Entities within the 
SceneGraph that require rendering. 
RenderCommands are the translation 
of the scene graph objects into whatever 
OpenGL primitives (vertex arrays, shaders, 
uniforms, meshes, etc) are necessary for 
 the GPU to display the object.

• RenderView processing –  
Each RenderView is processed by 
OpenGL to turn its associated list of 
RenderCommands into a frame buffer –  
an in-memory representation of the  
screen content.

• Frame buffer display – Once this process 
is repeated for all of the nodes within the 
frame graph, the frame is complete. At this 
point, the renderer calls swapBuffers() to 
exchange the newly drawn frame buffer with 
the current screen content and readies itself 
to be called for the next frame.

The FrameGraph renderer is simply configured in QML, 
making it easy for graphics experts and non-experts alike.
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Because the processing load is heavily 
dependent on the total number of leaf nodes 
in a frame graph tree, reducing the number of 
leaf nodes to the absolute minimum required 
will make your renderer configuration more 
efficient. Moving state information that remains 
constant across multiple nodes closer to the 
frame graph tree’s root can also help you 
optimize performance.

FrameGraph nodes

We’ve talked a bit about the nodes in a frame 
graph tree. But what exactly is a node for? 
Essentially, each node encapsulates a bit of 
functionality required by the renderer at each 
stage of execution. Qt 3D provides a number 
of pre-defined frame graph nodes for use 
in building your renderer. Although these 
nodes are all subclasses of the C++ class, 
Qt3D::QFrameGraphNode, they are accessible 
in QML too. By combining these simple 
node types it is often possible to configure 
the renderer without writing a single line of 
application-specific C++ rendering code.

FrameGraph Node Description

CameraSelector Sets a camera to perform the 
rendering

ClearBuffers Specifies OpenGL buffers to be 
cleared

LayerFilter Specifies entities to render 
by filtering entities with a 
matching layer component

RenderPassFilter Defines the filters used to 
select a render pass in a 
technique

RenderStateSet Sets various rendering states

RenderSurfaceSelector Specifies the surface to draw to

RenderTargetSelector Specifies the rendering target 
(i.e. frame buffer)

SortPolicy Controls how rendering 
commands are sorted

TechniqueFilter Defines the filters used to 
select a technique in a material

Viewport Defines the rectangular 
viewport where the scene is 
drawn

List of frame graph nodes. Consult the Qt 3D documentation to see 
additional node types not listed here.

Forward rendering

Let’s put some of our newfound frame graph 
knowledge into practice by building a simple 
renderer. One standard and straightforward 
way to organize the graphical pipeline is called 
forward rendering, which renders each object 
into the frame buffer in final form. Forward 
rendering uses a vertex -> fragment -> pixel 
transformation process as follows:

1. Object vertices are transformed by the 
viewer’s current viewport and viewing angle. 
These vertices represent the visible triangle 
meshes that wrap an object’s volume. 
Triangles that face away from the viewer or are 
outside the screen boundary are discarded.

2. Triangles are rasterized into many individual 
fragments. Fragments are “hopeful” pixels 
– they may or may not end up being 
displayed, depending on the fragment 
shader algorithm (which may choose to 
discard the fragment), the fragment’s 
transparency (which may make it invisible), 
and the presence of other overlapping 
objects (which may cover the fragment).

3. Fragment shaders operate on the fragments 
to calculate their color and/or transparency, 
based on surface texture, lighting, normal 
(the surface’s angle to the light), and any 
other variables the app may require.

4. The GPU finds the fragments at the same 
pixel location sorted by distance from the 
viewer and uses the closest fragment to 
determine the final pixel color.

Incidentally, a forward renderer is the type of 
renderer used by Qt Quick 2. Even though Qt 
Quick 2 is limited to 2D, its content is rendered 
in 3D to take advantage of OpenGL hardware 
acceleration. Defining the frame graph needed 
for a forward renderer is pretty simple, 
especially in QML:

One standard way to organize the graphical pipeline is called 
forward rendering, which renders each object into the frame 
buffer in final form.
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Code sample 1: forward renderer

/* Creates a frame graph tree with Viewport 
| Clear Buffers | Camera */
RenderSettings {
  id: root
  activeFrameGraph: Viewport {
    normalizedRect: Qt.rect(0.0, 0.0, 1.0,  
     1.0)
    property alias viewCamera:  
     viewCameraSelector.camera
    ClearBuffers {
      buffers: ClearBuffers. 
       ColorDepthBuffer
      CameraSelector {
        id: viewCameraSelector
      }
    }
  }
}

This resulting frame graph tree has three nodes 
with a single leaf.

Resulting frame graph for Code sample 1

During the rendering process, this frame graph 
tree creates a single RenderView that sets 
the view port to fill the entire screen (using 
normalized unit coordinates), clears the color 
and depth buffers, and sets the camera to the 
exposed camera property. If the state collected 
at each leaf is the same between two frame 
graph trees, the resulting renderer will create 

visually identical results. As an example, here 
are two additional frame graph configurations 
that produce the same outcome as the 
renderer in code sample 1.

Code sample 2: Another forward renderer 
that works like Code sample 1

/* Swap camera and clear buffers: Viewport 
| Camera | Clear Buffers */
RenderSettings {
  id: root
  activeFrameGraph: Viewport {
    normalizedRect: Qt.rect(0.0, 0.0, 1.0,  
     1.0)
    property alias viewCamera:  
     viewCameraSelector.camera
    CameraSelector {
      id: viewCameraSelector
    ClearBuffers {
      buffers: ClearBuffers. 
       ColorDepthBuffer
      }
    }
  }
}

Code sample 3: Yet one more forward 
renderer with the same result

/* An equivalent configuration: Camera | 
Viewport | Clear Buffers */
RenderSettings {
  id: root
  activeFrameGraph: CameraSelector {
    id: viewCameraSelector
    Viewport {
      normalizedRect: Qt.rect(0.0, 0.0,  
       1.0, 1.0)
      ClearBuffers {
        buffers: ClearBuffers. 
         ColorDepthBuffer
      }
    }
  }
}

If the state collected at each leaf is the same between two 
FrameGraph trees, the resulting renderer will create visually 
identical results.
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Multiple viewport rendering

A slightly more complex example of a renderer 
draws a scene graph from four different 
viewpoints, each in a separate quadrant of the 
screen. This type of multi-viewpoint renderer 
might make sense in any application that 
requires multiple views of the same scene, 
such as a CAD or 3D printing visualization tool, 
a car racing game with a rear-view mirror, or a 
security monitoring station.

Code sample 4: Multi-viewport renderer

RenderSettings {
  id: root
  activeFrameGraph: Viewport {
    id: mainViewport
    normalizedRect: Qt.rect(0, 0, 1, 1)
    ClearBuffers {
      buffers: ClearBuffers. 
       ColorDepthBuffer
    }
    Viewport {
      id: topLeftViewport
      normalizedRect: Qt.rect(0, 0, 0.5,  
       0.5)
    }
    Viewport {
      id: topRightViewport
      normalizedRect: Qt.rect(0.5, 0, 0.5,  
       0.5)
    }
    Viewport {
      id: bottomLeftViewport
      normalizedRect: Qt.rect(0, 0.5, 0.5,  
       0.5)
    }
    Viewport {
      id: bottomRightViewport
      normalizedRect: Qt.rect(0.5, 0.5,  
       0.5, 0.5)
    }
  }
}

The frame graph tree for this example is a 
bit more complex, resulting in five leaves and 
five corresponding RenderView objects. The 
following diagrams show the construction for 
the first two RenderViews (the other three 
RenderViews aren’t shown but are just like  
the second RenderView albeit for the  
remaining viewports).

Multi-viewport frame graph, ClearBuffers leaf

Multi-viewport frame graph, first viewport leaf

Although in our first example the nodes were 
arbitrarily arranged, in this example the order 
of the nodes matters a lot. If the ClearBuffers 
node was at the end instead of at the beginning, 
the rendering engine would create a black 
screen – everything that was carefully drawn 
would be erased as the last step. Similarly, the 
ClearBuffers node couldn’t be at the root of 
the frame graph tree or the screen would be 
cleared before each viewport was rendered, 
leaving only the last drawn viewport visible.

A slightly more complex example of a renderer draws a scene 
graph from four different viewpoints, each in a separate 
quadrant of the screen.
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Resulting display of the multi-viewport renderer

Parallel processing

The declaration order for the frame graph  
is important in specifying its behaviour but it 
doesn’t imply a draw order. That’s because  
Qt 3D can process each RenderView in  
parallel, depending on the number of  
available CPU cores.

Multi-viewport render views operating in parallel

Qt 3D uses a dedicated thread to submit the 
work to the GPU. Although the generation 
of render commands is done in parallel for 
each render view, the thread submits OpenGL 
commands to the GPU in an order that ensures 
correct rendering.

Deferred rendering

A forward renderer really is best when your 
lighting needs are simple. Scenes with multiple 
lights, reflected or refracted light, shadows, or 
other complexities in the light can be very tricky 
to display with a forward renderer. That’s where 
deferred rendering comes into play. 

Deferred rendering takes multiple passes 
through a scene. An early pass sets state 
information such as normal vector, color,  
depth, or position that the renderer will use  
in subsequent passes. These pre-computed 
values are not displayed but stored in a buffer 
called the geometry buffer (or G-buffer) that 
resides in a texture. Once the object meshes 
have been drawn, the G-buffer contains 
everything that can be seen by the current 
camera. A second pass then renders the scene 
to a buffer with the final colors computed from 
the G-buffer information.

Visualization of referred renderer G-buffer  
contents: diffuse color (top left), depth buffer  

(top right), normal vectors (bottom left),  
and world position (bottom right)

Complexities in light can be very tricky to display with a 
forward renderer; that’s where deferred rendering comes  
into play.



KDAB | the Qt, OpenGL and C++ experts 7

Output of deferred renderer’s second pass  
that combines all G-buffer elements

Deferred rendering decouples the generation of 
the scene’s geometry from any lighting effects 
so that the geometry for each object is only 
calculated once. Another advantage is that the 
shading and lighting computations, which are 
often complex, are dependent on the resolution 
of the screen rather than the number of objects 
in a scene. Deferred rendering does have some 
drawbacks – it doesn’t handle transparency well, 
it uses a lot of GPU memory bandwidth, and it 
doesn’t play well with hardware anti-aliasing. 
However, because this technique can easily 
render many lights in a scene and handle object 
shadowing it’s often a popular choice for games.

Code sample 5: Deferred renderer

Viewport {
  id: root
  normalizedRect : Qt.rect(0.0, 0.0, 1.0,  
   1.0) ➊
  property GBuffer gBuffer
  property alias camera :  
   sceneCameraSelector.camera
  // SceneEntities should reference one 
  // of these to be incorporated into         
  // correct layer
  readonly property Layer sceneLayer {}  
   ➋

  readonly property Layer screenQuadLayer  
   {}
  readonly property real windowWidth: 
   surfaceSelector.surface !== null 
   ? surfaceSelector.surface.width: 0
  readonly property real windowHeight: 
   surfaceSelector.surface !== null ? 
   surfaceSelector.surface.height: 0
  RenderSurfaceSelector {
    id: surfaceSelector
    // Fill G-Buffer
    LayerFilter {
      layers: sceneLayer
      RenderTargetSelector {
        id : gBufferTargetSelector ➌
        target: gBuffer
        ClearBuffers {
          buffers: ClearBuffers. 
           ColorDepthBuffer ➍
          RenderPassFilter {
            id : geometryPass
            matchAny : FilterKey { name :  
             "pass"; value : "geometry" }  
             ➎
            CameraSelector {
              id : 
                sceneCameraSelector ➏
            }
          }
        }
      }
    }
    TechniqueFilter {
      parameters: [
        Parameter { name: "color"; value : 
         gBuffer.color },
        Parameter { name: "position"; value 
         : gBuffer.position },
        Parameter { name: "normal"; value :  
         gBuffer.normal },
        Parameter { name: "depth"; value :  
         gBuffer.depth },
        Parameter { name: "winSize"; value 
         : Qt.size(1024, 1024) }
      ]

Because deferred rendering can easily render many lights 
in a scene and handle object shadowing, it’s often a popular 
choice for games.
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      RenderStateSet {
        // Render FullScreen Quad
        renderStates: [
          BlendEquation { 
            blendFunction: BlendEquation. 
             Add },
          BlendEquationArguments {  
            sourceRgb:  
             BlendEquationArguments. 
             SourceAlpha; destinationRgb:  
             BlendEquationArguments. 
             DestinationColor }
        ]
        LayerFilter {
          layers: screenQuadLayer ➐
          ClearBuffers {
            buffers: ClearBuffers.
             ColorDepthBuffer ➑
            RenderPassFilter {
              matchAny : FilterKey { name : 
               "pass"; value : "final" } ➒
              parameters: Parameter { name:     
               "winSize"; value : Qt.size(  
               windowWidth, windowHeight) 
              }
            }
          }
        }
      }
    }
  }
}
The resulting frame graph tree looks like this:

Deferred renderer frame graph tree

The resulting renderer works like this, starting 
with the first render view:

➊ Defines a viewport that fills the whole screen

➋ Defines our layers for use within subsequent 
LayerFilter definitions

➌ Sets the G-buffer as the active render target

➍ Clears the color and depth on the G-buffer

➎ Selects only entities in the scene that have 
a material and technique matching the render 
pass filter (“geometry”)

➏ Specifies which camera should be used

Then the second render view:

➐ Selects all entities that have a layer 
component matching screenQuadLayer

➑ Clears the color and depth buffers on the 
currently bound frame buffer (the screen)

➒ Selects only entities in the scene that have a 
material and technique matching the filter key in 
the render pass filter (“final”)

Shadow rendering

Our last example is the most complex, building 
on everything we’ve learned thus far. We’ll 
be creating a renderer that can handle the 
following scene, as well as all the code to create 
(and animate) the objects within. The source 
code for this example is in Qt Creator examples 
under shadow-map-qml.

Renderer using shadow mapping

Shadow rendering, our last example, is the most complex, 
building on everything we’ve learned thus far.
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This example shows us how to render shadows. 
It’s important to note that the trefoil knot and 
the toy plane both cast shadows on themselves, 
and the plane also casts a shadow on the knot. 
How is this achieved within our renderer? 
By using a shadow mapping technique – this 
generates decent looking shadows without 
introducing a large performance hit.

Shadow mapping is normally implemented 
in two passes. The first pass generates the 
shadow information by identifying fragments 
on which the light is shining. The second 
pass renders the scene objects and uses the 
first pass shadow information to determine 
appropriate lighting for each fragment. 

The first pass needs to determine which 
fragments are in a straight line from the light 
source. To accomplish this, we draw the scene 
with a camera at the light source – in other 
words, in light space – viewing the scene from 
the point-of-view of the light. We store the 
distance of the fragments that are closest to 
the light into a frame buffer object (FBO) with 
a depth texture. (Since we aren’t drawing the 
fragments at this point, our FBO doesn’t require 
color information, just depth.) OpenGL depth 
testing does exactly what we want here. Since 
OpenGL will automatically track the depth of 
the closest fragments, that gives us what we 
need – the first fragment at each point in the 
light space that’s closest to the light source.

 Shadow map – rendering the scene  
from the light’s point-of-view

Fragments farther away will be occluded by 
closer fragments and should display in shadow

The light’s point-of-view rendering is our 
shadow map and only preserves the depth for 
each fragment. Darker colors are closer to the 
camera while lighter colors are farther away. 
From the first screenshot’s perspective, the  
light source (the “sun”) is outside the upper- 
right corner of the viewport. That means that 
the toy plane should be closer to the light  
and hence, darker/closer in the shadow map – 
and that’s exactly what we see in the shadow 
map information.

Once the first pass has generated our shadow 
map, we go to the second rendering pass to 
draw our objects. We revert our viewport back 
to the normal camera and draw all our objects 
per usual. However, we can now incorporate 
the shadow map information to determine if 
the fragments are in light or shadow as we  
draw them.

How we use the shadow map to identify if our 
fragments are lit requires a bit of matrix math 
– we have to remap the fragment’s location  
back to its position in light space. Once we  
have a light space coordinate for the fragment, 
we refer back to the shadow map and compare 
the fragment’s depth with the depth stored 
in the shadow map. If the fragment depth is 
greater (farther away) then the fragment is 
hidden by a closer object and will be in shadow. 
Otherwise, the fragment is the closest object to 
the light and it should be lit.

With that understanding of the shadow 
mapping technique, let’s look at the code  
that implements it.

Setting up the scene

Before we worry about the details of 
configuring our shadow renderer, let’s create 
the scene with all the necessary objects.

Identifying if a fragment is lit or in shadow requires converting 
the fragment position in world coordinates to its position in 
light space.
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Code sample 6: main.qml

import QtQuick 2.1 as QQ2
import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Input 2.0
import Qt3D.Extras 2.0
Entity {
  id: sceneRoot
  Camera { ➊
    id: camera

    projectionType: CameraLens. 
     PerspectiveProjection
    fieldOfView: 45
    aspectRatio: _window.width /  
     _window.height
    nearPlane: 0.1
    farPlane: 1000.0
    position: Qt.vector3d(0.0, 10.0, 20.0)
    viewCenter: Qt.vector3d(0.0, 0.0, 0.0)
    upVector: Qt.vector3d(0.0, 1.0, 0.0)
  }
  FirstPersonCameraController { camera:  
   camera } ➋
  ShadowMapLight { ➌
    id: light
  }
  components: [
    ShadowMapFrameGraph { ➍
      id: framegraph
      viewCamera: camera
      lightCamera: light.lightCamera
    },
    // Event Source will be set by 
    // the Qt3DQuickWindow
    InputSettings { }
  ]
  AdsEffect { ➎
    id: shadowMapEffect
    shadowTexture: framegraph.shadowTexture  
    light: light
  }
  // Trefoil knot entity
  Trefoil { ➏
    material: AdsMaterial {

      effect: shadowMapEffect
      specularColor: Qt.rgba(0.5, 0.5, 0.5,  
       1.0)
    }
  }
  // Toyplane entity
  Toyplane { ➐
    material: AdsMaterial {
      effect: shadowMapEffect

      diffuseColor: Qt.rgba(0.9, 0.5, 0.3,  
       1.0)
      shininess: 75
    }
  }
  // Plane entity
  GroundPlane { ➑
    material: AdsMaterial {
      effect: shadowMapEffect
      diffuseColor: Qt.rgba(0.2, 0.5, 0.3,  
       1.0)
      specularColor: Qt.rgba(0, 0, 0, 1.0)
    }
  }
}
➊ The first component we create is a Camera, 
which represents the camera used for the final 
rendering.

➋ We create a FirstPersonCameraController 
element so we can control the camera using  
a keyboard or mouse. 

➌ Our light is created with a ShadowMapLight 
entity, which represents our light sitting 
somewhere above the plane and looking  
down at the scene’s origin. 

➍ We tie the light to our custom frame graph 
ShadowMapFrameGraph.

➎ We set the rendering AdsEffect that is 
responsible for doing the shadow rendering.

Finally, we create entities for the objects in the 
scene: a trefoil knot ➏, a toy aircraft ➐, and the 
2D plane representing the green ground ➑.

Classes needed for the shadow rendering example are in 
main.qml: camera, controller, light, and rendering effects,  
as well as knot, plane, and ground entities.
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Setting the light

Now we need to define the light source.

Code sample 7: ShadowMapLight.qml

import Qt3D.Core 2.0
import Qt3D.Render 2.0
Entity {
  id: root
  property vector3d lightPosition:   
   Qt.vector3d(30.0, 30.0, 0.0)
  property vector3d lightIntensity:   
   Qt.vector3d(1.0, 1.0, 1.0)
  readonly property Camera lightCamera:  
   lightCamera
  readonly property matrix4x4    
   lightViewProjection:
     lightCamera.projectionMatrix.  
      times(lightCamera.viewMatrix)
  Camera {
    id: lightCamera
    objectName: "lightCameraLens"
    projectionType: CameraLens.
     PerspectiveProjection
    fieldOfView: 45
    aspectRatio: 1
    nearPlane : 0.1
    farPlane : 200.0
    position: root.lightPosition
    viewCenter: Qt.vector3d(0.0, 0.0, 0.0)
    upVector: Qt.vector3d(0.0, 1.0, 0.0)
  }
}

The light is a directional spotlight. Since in the 
first rendering pass we also need to use the 
light as a camera, we place a Camera sub- 
entity inside of it and expose it as a property.  
The light also exposes properties for position, 
color/intensity, and a transformation matrix. 
The transformation matrix is used to allow us to 
map fragments back to light space coordinates 
so we can test our shadow map during the 
second rendering pass.

Creating the frame graph

With the scene’s basic objects in place, it’s time 
to create the frame graph that will configure our 
renderer for shading.

Code sample 8:  
ShadowMapFrameGraph.qml

import QtQuick 2.2 as QQ2
import Qt3D.Core 2.0
import Qt3D.Render 2.0
RenderSettings {
  id: root
  property alias viewCamera:  
   viewCameraSelector.camera
  property alias lightCamera:  
   lightCameraSelector.camera
  readonly property Texture2D 
   shadowTexture: depthTexture
  activeFrameGraph: Viewport {
    normalizedRect: Qt.rect(0.0, 0.0, 1.0, 
     1.0)
    RenderSurfaceSelector {
      RenderPassFilter {
        matchAny: [ FilterKey { name: 
         "pass"; value: "shadowmap" } ]
        RenderTargetSelector {
          target: RenderTarget {
            attachments: [
              RenderTargetOutput {
                objectName: "depth"
                attachmentPoint:  
                 RenderTargetOutput.Depth  
                 ➊
                texture: Texture2D { ➋
                  id: depthTexture
                  width: 1024
                  height: 1024
                  format: Texture.
                   DepthFormat
                  generateMipMaps: false
                  magnificationFilter: 
                   Texture.Linear
                  minificationFilter: 
                   Texture.Linear

Because the light view is also needed as a camera for  
the shadow renderer’s first pass, we add and expose  
a Camera property to it.
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                  wrapMode {
                    x: WrapMode.ClampToEdge
                    y: WrapMode.ClampToEdge
                  }
                  comparisonFunction: 
                   Texture.CompareLessEqual
                  comparisonMode: Texture.
                   CompareRefToTexture
                }
              }
            ]
          }

          ClearBuffers {
            buffers: ClearBuffers.
             DepthBuffer
            CameraSelector { ➌
              id: lightCameraSelector
            }
          }
        }
      }

      RenderPassFilter {
        matchAny: [ FilterKey { name:  
         "pass"; value: "forward" } ]
        ClearBuffers {
          clearColor: Qt.rgba(0.0, 0.4,  
           0.7, 1.0)
          buffers: ClearBuffers. 
           ColorDepthBuffer
          CameraSelector {
            id: viewCameraSelector
          }
        }
      }
    }
  }
}

We have two paths from the topmost Viewport 
entity, and each path corresponds to a pass of 
the shadow map technique.

 

Shadow map frame graph tree

One aspect of frame graphs that we’ve used 
in earlier examples but haven’t yet addressed 
in detail is filters. A filter entity allows you to 
selectively enable or disable portions of the 
frame graph tree using selector entities. In 
our case, the two alternate paths for each 
pass of the shadow renderer are enabled and 
disabled using a RenderPassFilter. Our render 
pass filter will filter based on a string we’ve 
defined: in our case the string “pass”. This lets 
us modify the frame graph configuration for 
each pass appropriately. Other lines of interest 
to highlight:

➊ In the first pass to generate the shadow map, 
we need to render to an off-screen surface (our 
FBO) with a depth texture attachment. 

➋ The Texture2D entity configures the texture 
storage that we use to keep the shadow map. 

➌ We also need to render using the light’s 
camera, so we set the CameraSelector entity  
to the camera that our light exports.

The second pass is much more straightforward: 
we simply render to the screen using the  
main camera.

Filter entities allow you to selectively enable or disable 
portions of the FrameGraph tree using selector entities.
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The effect

The bulk of the work happens in the  
AdsEffect.qml file, where our main Effect entity 
is defined. The effect implemented is using the 
ADS shading model (ambient diffuse specular,  
in other words, Phong shading) with our 
shadow-map generated shadows.

Code sample 9: AdsEffect.qml

import Qt3D.Core 2.0
import Qt3D.Render 2.0
Effect {
  id: root
  property Texture2D shadowTexture
  property ShadowMapLight light
  // These parameters act as default values    
  // for the effect. They take priority  
  // over any parameters specified in the    
  // RenderPasses below (none provided in  
  // this example). In turn these parameters  
  // can be overwritten by specifying them  
  // in a Material that references this
  // effect. The priority order is:
  //
  // Material -> Effect -> Technique -> 
  // RenderPass -> GLSL default values
  parameters: [ ➊
    Parameter { name: 
     "lightViewProjection"; value:   
     root.light.lightViewProjection },
    Parameter { name: "lightPosition";  
     value: root.light.lightPosition },
    Parameter { name: "lightIntensity";  
     value: root.light.lightIntensity },
    Parameter { name: "shadowMapTexture";  
     value: root.shadowTexture }
  ]
  techniques: [ ➋
    Technique {
      graphicsApiFilter {
        api: GraphicsApiFilter.OpenGL
        profile: GraphicsApiFilter.
         CoreProfile

        majorVersion: 3
        minorVersion: 2
      }
      renderPasses: [
        RenderPass { ➌
          filterKeys: [ FilterKey { name: 
           "pass"; value: "shadowmap" } ] ➍
          shaderProgram: ShaderProgram {
            vertexShaderCode: loadSource( 
             "qrc:/shaders/shadowmap.vert")
            fragmentShaderCode: loadSource(
             "qrc:/shaders/shadowmap.frag")
          }
          renderStates: [
            PolygonOffset { scaleFactor: 4; 
             depthSteps: 4 },
            DepthTest { depthFunction: 
             DepthTest.Less }
          ]
        },
        RenderPass {
          filterKeys: [ FilterKey { name : 
           "pass"; value : "forward" } ] ➎
          shaderProgram: ShaderProgram {
            vertexShaderCode: loadSource(
             "qrc:/shaders/ads.vert")
            fragmentShaderCode: loadSource(
             "qrc:/shaders/ads.frag")
          }
          // no special render state set =>
          // use the default set of states
        }
      ]
    },
    Technique {
      graphicsApiFilter {
        api: GraphicsApiFilter.OpenGLES
        majorVersion: 3
        minorVersion: 0
      }
      renderPasses: [
        RenderPass {
          filterKeys: [ FilterKey { name: 
            "pass"; value: "shadowmap" } ]

The Effect entity is implemented using Phong shading with  
the ambient, diffuse, and specular components of light.
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          shaderProgram: ShaderProgram {
            vertexShaderCode: loadSource(
            "qrc:/shaders/es3/shadowmap.vert")
            fragmentShaderCode: loadSource(
            "qrc:/shaders/es3/shadowmap.frag")
          }
          renderStates: [
            PolygonOffset { scaleFactor: 4;
             depthSteps: 4 },
            DepthTest { depthFunction: 
             DepthTest.Less }
          ]
        },
        RenderPass {
          filterKeys: [ FilterKey { name : 
           "pass"; value : "forward" } ]
          shaderProgram: ShaderProgram {
            vertexShaderCode: loadSource(
             "qrc:/shaders/es3/ads.vert")
            fragmentShaderCode: loadSource(
             "qrc:/shaders/es3/ads.frag")
          }
        }
      ]
    }
  ]
}
➊ The parameters list defines default values 
for the effect. Those values are mapped to 
OpenGL shader program uniforms so we can 
access them within the shaders. What’s needed 
in the shaders is information from the Light 
entity (position, intensity, and its view/projection 
matrix), as well as the shadow map texture 
exposed by the frame graph. 

➋ In order to be able to adapt the 
implementation to different hardware or 
OpenGL versions, an Effect is implemented 
by providing one or more Technique elements. 
In our case, we provide two techniques, one 
for OpenGL 3.2 Core or greater and one for 
OpenGL ES 3.0 or greater. (The two techniques 
allow us to use customized shaders for each 
platform since the GLSL variant is slightly 

different between those two OpenGL versions.) 

➌ Inside each technique we define our two 
rendering passes. We set the filter values for 
each so they’re associated with our frame graph 
rendering passes. 

➍ For the shadow map pass, we load GLSL 
shaders that very simply project the mesh 
coordinates from model space into clip space. 
The fragment shader is empty because we 
aren’t generating color information and OpenGL 
will automatically capture the depth. We also set 
some custom OpenGL states for polygon offset 
(used to help prevent fragments from Z-fighting) 
and depth testing (to make sure we’re properly 
sorting objects front to back).

➎ The second pass is instead a normal forward 
renderer using Phong shading. The code really 
just loads the fragment and vertex shaders that 
will be used when drawing.

The shaders

The full explanation of the shader code requires 
some fluency in GLSL shader language and is 
out of scope of this whitepaper. However, we 
will point out the key parts that are necessary  
to make our shadow mapper work.

Code sample 10: ads.vert

#version 150 core
in vec3 vertexPosition;
in vec3 vertexNormal;
out vec4 positionInLightSpace;
out vec3 position;
out vec3 normal;
uniform mat4 lightViewProjection;
uniform mat4 modelMatrix;
uniform mat4 modelView;
uniform mat3 modelViewNormal;
uniform mat4 mvp;
void main() {

You can customize shaders by using multiple Technique 
elements, for example OpenGL versus OpenGL ES or  
different versions of Open GL.
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  const mat4 shadowMatrix = 
   mat4( 0.5, 0.0, 0.0, 0.0,
         0.0, 0.5, 0.0, 0.0,
         0.0, 0.0, 0.5, 0.0,
         0.5, 0.5, 0.5, 1.0); ➋
  positionInLightSpace = shadowMatrix *  
   lightViewProjection * modelMatrix * 
   vec4(vertexPosition, 1.0); ➊
  normal = normalize(modelViewNormal * 
   vertexNormal);
  position = vec3(modelView * 
   vec4(vertexPosition, 1.0));
  gl_Position = mvp * vec4(vertexPosition,  
   1.0);
}

➊ Here is where we compute the coordinates 
of each vertex in light space. We have to 
adjust the coordinates slightly by multiplying 
with shadowMatrix. ➋ This lets us convert 
from normalized device coordinates (ranging 
between -1 and 1) to texture map coordinates 
(between 0 and 1) so we can easily look up 
values in our shadow map during the fragment 
shader. On to the fragment shader...

Code sample 11: ads.frag

#version 150 core
uniform mat4 viewMatrix;
uniform vec3 lightPosition;
uniform vec3 lightIntensity;
uniform vec3 ka; // Ambient reflectivity
uniform vec3 kd; // Diffuse reflectivity
uniform vec3 ks; // Specular reflectivity
uniform float shininess; 
               // Specular shininess factor
uniform sampler2DShadow shadowMapTexture;
in vec4 positionInLightSpace;
in vec3 position;
in vec3 normal;
out vec4 fragColor;

vec3 dsModel(const in vec3 pos, const in  
 vec3 n) ➍
{
  // Calculate the vector from the light 
  // to the fragment
  vec3 s = normalize(vec3(viewMatrix *  
   vec4(lightPosition, 1.0)) - pos);
  // Calculate the vector from the fragment  
  // to the eye position (origin since this  
  // is in "eye" or "camera" space)
  vec3 v = normalize(-pos);
  // Reflect the light beam using the  
  // normal at this fragment
  vec3 r = reflect(-s, n);

  // Calculate the diffuse component
  float diffuse = max(dot(s, n), 0.0);
  // Calculate the specular component
  float specular = 0.0;
  if (dot(s, n) > 0.0)
    specular = pow(max(dot(r, v), 0.0),  
     shininess);
    // Combine the diffuse and specular 
    // contributions (ambient is taken 
    // into account by the caller)
    return lightIntensity * (kd * diffuse 
     + ks * specular);
  }
  void main() {
    float shadowMapSample =  
     textureProj(shadowMapTexture,  
     positionInLightSpace); ➊
    vec3 ambient = lightIntensity * ka;
    vec3 result = ambient;
    if (shadowMapSample > 0) ➋
      result += dsModel(position,  
      normalize(normal)); ➌
    fragColor = vec4(result, 1.0);
}

The job of the fragment shader is conceptually 
easy – map the current fragment back to the 
shadow map, look up what’s in the shadow 

Converting from normalized device coordinates to texture 
map coordinates allows for easy shadow map value lookups 
within the fragment shader.
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The flexibility of the Qt 3D renderer allows you to implement 
many sophisticated effects.

map at that position, and if it’s positive the 
fragment is on a lit surface so add in our lighting 
component. That’s exactly what happens here: 
we sample the shadow map ➊, and if it’s lit ➋, 
we add in our light component ➌ using our 
Phong lighting model.➍ Otherwise if it’s not 
lit, the only lighting comes from our ambient 
source.

Although there’s a decent amount of code in 
this example to pull it off, this example shows 
just how flexible and configurable the Qt 3D 
rendering engine is.

Summary

The flexibility of the Qt 3D renderer allows you 
to pretty easily experiment with a variety of 
sophisticated effects. With this introduction to 
frame graphs, frame graph nodes, and how the 
frame graph tree operates, you’ll have some 
idea about how the Qt 3D engine uses frame 
graph and its assorted components to configure 
renderers – and hopefully some idea of how 
to go about building your own. However, if you 
get stuck trying to implement some amazing-
looking new graphical technique, we’re always 
happy to help!


