
Andrew Hayzen | Senior Software Engineer, KDAB
Leon Matthes | Software Engineer, KDAB
Florian Gilcher | Managing Director, Ferrous Systems

KDAB’s Software
Development Best Practices

Building Hybrid Rust and C/C++
Applications

2 KDAB — Trusted Software Excellence

As a modern programming language, Rust has benefitted from

lessons learned from earlier established languages like C and C++. As

a result, it has been designed to avoid many common programmer

errors. Because the language structure and strict compiler checks

make it more difficult to create bugs, Rust has been steadily attracting

developers interested in creating more resilient code. Once developers

fall in love with this safety net, they often try to “oxidize everything”

– in other words, rewrite all code in Rust. However, while an all-Rust

approach might work for very small bare-metal embedded systems or

fully isolated microservices, it doesn’t instantly retire the vast amount

of existing code in most company’s code bases. For the foreseeable

future, most developers realize a more nuanced stance is necessary,

one that harmoniously blends Rust with existing C and C++ libraries.

Thankfully, this pragmatic “Rust in the Real World” approach has

been part of Rust’s heritage since its inception within Mozilla Firefox.

So, in light of this historical combination of Rust and C++, what have

we learned that can help address integration challenges today? To

find out, we consulted Rust experts and practitioners within our

engineering department as well as Ferrous Systems, an internationally

recognized Rust consultancy. Here, we present guidelines and advice

on combining Rust and C/C++ across a variety of scenarios.

1 Structure

 1.1. Where to Start?

Because Rust began life within a C++ environment, combining the

two languages is not unusual. This means the community experience

for building a hybrid Rust and C++ solution is deep and the tooling is

good. But when deciding where to begin integrating the two languages

in your software, are there any special characteristics in your existing

code that you should look for? We recommend picking a starting point

that has these traits:

KDAB — Trusted Software Excellence 3

 • Problematic. Pick something that is already a source of bugs and

crashes, software that is messy and difficult to maintain, or software

with many potential vulnerabilities. If you’re going to the trouble of

oxidizing it, you want to choose something where a Rust conversion

is going to pay immediate benefits.

 • Self-contained. Ensure the code is well-isolated without a lot of

calls into the rest of the code base. Code with sharp boundaries

will be the simplest to extract, rewrite, and replace. These will also

be the easiest to create a C foreign function interface (FFI) that can

be thoroughly unit tested to ensure a swapped-out component

behaves identically.

 • Clean interface. Choose C++ code with a reasonably clean interface

and entry points that are clearly defined and as narrow as possible.

 • Idiomatically similar. By this, we mean avoid C++ software that isn’t

well-suited to Rust and thus would require gymnastics to translate.

For example, software that relies heavily on preprocessor macros or

templates, or is inherently object-oriented rather than procedural

are not ideal targets for a first translation attempt.

A good example of a suitable Rust target is often a leaf library at the

edge of the software architecture. This might be an application’s

support for media or image files (which are also often plagued with

memory safety issues that Rust can address). Other good choices are

parsers and input handling routines. More generally, modules that

manage and process untrusted, externally derived data often meet all

the desired attributes.

In general, don’t do a full rewrite in Rust, do it in pieces. Find one good

place as the initial target. A Rust conversion also tends to improve the

remaining C++ code because this enforces a clean separation between

the layers of your application.

4 KDAB — Trusted Software Excellence

 1.2. Rusting Outside-in or Inside-out?

Once you’ve had some smaller successes in oxidizing your code

base, you might be tempted to tackle bigger conversions. Is it better

to think about a large project as a C++ project that contains Rust

components, or as a Rust application that calls into C++ libraries?

Either way can be made to work whether you’re calling from C/C++

into Rust or the other way around. However, there are a couple items

you might want to consider:

 • Safety approach. In Rust terms, C/C++ code is trivially unsafe,

while Rust is safe by default until you start marking code as

“unsafe”. So, if you consider your project primarily safe with a

handful of carve-outs, then structure your application as Rust that

calls into C++ functionality as needed. If it’s better to think about

your project as a big project with specific safe zones, then having a

C++ main framework might make more sense.

 • Multi-threading. It is very difficult to safely manage data accessed

asynchronously from both sides of a Rust/C++ boundary. Thus,

it’s best to consider the Rust and C++ worlds as separate, keeping

threads and thread data independent and isolated on each side.

Depending on how your application uses threads, this may tilt the

decision in the direction of either C++ or Rust as the main “host”

application.

If you’re building a new application from scratch, our

recommendation is to start creating it in Rust. While the application

is small, you’ll probably be able to do it completely in Rust, which will

avoid the hassle of needing C FFIs. As the application grows in size

and functionality, the more likely it is that you’ll find situations where

a good Rust solution doesn’t exist but a good C++ one does. Then

you can progressively add C++ libraries and the requisite C FFIs as

necessary.

KDAB — Trusted Software Excellence 5

2 Keeping C++

 2.1. When Not to Throw Away Perfectly Good Code

Despite how much the Rust community is into embracing

correctness, there is also a surprising amount of tolerance for

getting things “mostly right”. That is, if you can get things 90

percent of the way there – make things as good as you can –

then you can work on refining it later. That naturally leads to the

following questions: Do we really need to redo everything in Rust,

and if not, what should we leave alone?

A long-term plan to oxidize all your software is not always

necessary. It’s not even always a good idea since there is a lot

of time-tested and high-quality C++ code. Algorithms like signal

processing or cryptography have limited inputs and outputs.

They can be very complex yet may not need to allocate memory

– the source of 70% of C++ bugs according to both Google and

Microsoft. Rewriting this code, even if that rewrite is in a safety-

focused language, creates an opportunity to introduce subtle new

bugs that have nothing to do with memory or pointers. As a result,

they may be extremely safe to leave as a C++ implementation.

Similarly, simple driver implementations in C probably won’t

benefit much from a Rust redo.

Throwing software out the window for the sake of language purity

doesn’t make sense. Before you start a rewrite, ask yourself these

questions:

 • Do you actually have a problem you’re solving?

 • How many other people have used that code and how well is it

exercised?

 • How long has it been since it’s been changed?

 • How does it treat memory allocation and deallocation?

6 KDAB — Trusted Software Excellence

If your answers provide some confidence that the software

is working and correct, then it’s probably better off left alone.

There’s no point throwing away multiple years of knowledge and

engineering that have been invested into that module. However,

if you’re unable to convince yourself that the software is correct,

then maybe it’s time for a rewrite.

 2.2. Times to Avoid Rust

Rust isn’t a panacea for all problems, and indeed, there are some

areas where C++ has an advantage. Most challenges aren’t due

to the language itself but rather differences in maturity of the

solutions.

 • Maintainer risk. The Rust software ecosystem is still young,

which means there are often very small teams responsible

for maintaining critical bits of code. Many of the common

crates that people use are maintained by a single person. If

a maintainer moves on to another project, the software you

depend on may end up being stranded. There may be no one

to rely on fixing bugs except yourself.

 • Version stability. Rust is still a new and growing language

with a couple of significant compiler releases each year. Brand

new language or compiler features may be essential to your

development, which means you’ll need to enforce using a

compiler with a certain version number or higher. That can

impose many difficulties on a project, forcing lots of software

and toolchain updates, and preventing the use of modules built

using older versions of Rust. While new C++ standards are also

released on a regular cadence, the C/C++ community manages

backward compatibility much more strictly.

 • Software availability. While Rust has many solutions in lots

of popular domains, there are areas where it’s not yet as well

practiced, such as embedded development. Embedded Rust

KDAB — Trusted Software Excellence 7

solutions that already exist to solve specific problems may be

difficult to find, while C++ solutions exist and are easy to obtain.

Additionally, Rust’s fluidity can be most challenging in several

areas:

 • If you’re dealing with a very large codebase

 • If you need specific embedded support

 • If your software has long development cycles

 • If your product needs in-field support for many multiple years.

In these environments, it’s ideal to use C++ for the code that

requires long-term development stability and Rust for software

that requires safety but can survive a certain amount of

development churn.

 2.3. Places to Avoid Rust

There are a few places where converting code from C++ to Rust

can be done but is tricky and troublesome. For instance, complex

object-oriented hierarchies using multiple inheritance might be

difficult to replicate cleanly.

Qt applications are another good example of code that’s tricky to

oxidize, since Qt code relies not just on objects and preprocessor

macros but also requires an external pre-processing step to

manage signals and slots (the moc). This doesn’t mean that you

can’t have Rust and Qt co-exist, but the complexity of getting Qt

idioms to work in Rust means it’s usually better to leave those

chunks of code in C++. Wrap your Qt event loop and window

management with an appropriate set of C FFIs and let Rust

call into it when it needs to put up UI components or get user

feedback.

Similar issues exist with C++ code that mixes a wide variety of

8 KDAB — Trusted Software Excellence

string types. Because the C and C++ language/library features

have grown alongside global needs for expanded string

encodings, C++ has acquired many independent ways to create

and refer to strings. Here are a few:

 • C-style character pointers (with char, char16_t, char32_t, and

wchar_t types)

 • std::string objects

 • UTF-8 or UTF-32 literals

 • string streams

 • QStrings

Rust has had the benefit of being built after the evolving string

landscape and, as a result, has developed string options that

are semantically coherent and safe. However, managing C++

interfaces with messy string APIs can be challenging on the Rust

side. They can also take an FFI performance hit as we discuss in

section 3.2.

Essentially, the further you get from clean interfaces and isolated

subsystems, the more difficult any oxidation project will be.

3 Moving to Rust

 3.1 Advice for C++ Developers Attacking Rust

When you learn a new language – programming or otherwise –

your brain naturally translates new concepts into terms you’re

already familiar with. However, a C++ developer attacking a

problem in Rust isn’t merely adjusting to a new syntax. Because

Rust borrows some of its lineage from ML, a functional language,

while C++ uses an object-oriented paradigm, developers must

adopt a different mindset. Numerous aspects of these languages

have significant underlying differences. Understanding the

KDAB — Trusted Software Excellence 9

subtleties of effectively managing ownership and object lifetimes,

grappling with dramatically different approaches to concurrency,

and comprehending the “what” and “why” of each language’s

definition of undefined behaviors can take time and hands-on

experience to acquire.

There is a steep learning curve to developing a “Rust-natural” style

of coding, and getting into the proper headspace of a language

is part of the learning process that can’t be rushed. This means

that C++ developers coming to Rust shouldn’t be overconfident in

their understanding of subtle differences in the code. Let new-to-

Rust developers start in areas of the code that aren’t as critical so

they can experiment with their new knowledge. Allow them extra

time because they will inherently be less productive. Get external

reviews from time to time that include an expert assessment

of the code, allowing the expert to explain the why and how of

proper “Rusteacean” form.

 3.2 The Cost of Rusting

Is there a performance downside to converting C++ code to Rust?

Not really. Although Rust may insert runtime bound checking that

C++ doesn’t, its performance is generally on par with C++. Both

are compiled languages without garbage collection that share the

same compiler back-end and optimizer as Rust has both gcc and

LLVM variants. So, while you might be able to squeak some faster

benchmarks out of C++, for the vast majority of real-life production

code, Rust performs closely enough that you don’t need to worry

about the difference.

While this is true for standalone Rust, there is a performance

penalty for combining Rust and C++ when you force Rust code

through a C FFI. This kills the effectiveness of the optimizer around

any C FFI calls and may also require some Rust type conversion.

The exact same problem arises on the other side of the bridge,

10 KDAB — Trusted Software Excellence

where calling Rust from C++ code ruins the C++ compiler’s chance

of optimizing across the call. It’s important to be aware that there

can be performance hits from interlanguage calls, particularly in

hot loops or other code that needs maximum speed. (Link time

optimization in LLVM can address some of these optimization

issues, although it requires a bit of setup.)

	 3.3	The	Benefits	of	Unsafe	Rust

While C++ lacks a concept of safety, you might be wondering if

“unsafe” Rust is essentially the same because you can dereference

bad pointers in both. You can certainly generate a segfault in

unsafe Rust, just like you can in C++. The likelihood may be lower,

but you can no longer guarantee it won’t happen.

However, there’s still one huge benefit in using “unsafe Rust”.

When your code does crash, you have a much clearer idea of

where that crash is happening. Segfaults in a hybrid Rust/C++

application are caused by two things: Rust code marked as unsafe

or some code on the C++ side. Since you can easily search for

“unsafe” in the Rust source, it becomes easier to quickly eliminate

or pinpoint the Rust code as a potential cause, helping you narrow

down the source of the problem. The “unsafe” keyword also helps

during code reviews since it highlights areas that merit extra

attention.

4 Connective Tissue

 4.1. Connecting Rust and C/C++

How do you actually call between Rust and C/C++ code? There are

a lot of options to create bindings between the two languages.

Let’s briefly describe each and how they’re most useful.

 • Rust extern “C”: Rust has a built-in feature for accessing

external code through a C FFI. It works for C or for C++

KDAB — Trusted Software Excellence 11

code with function prototypes marked with extern “C”. This

mechanism serves as the basic underlying tool that can be

used to manually access functions if your code is written in

simple C or if none of the following other tools can be made to

work.

 • bindgen: This is a base tool used to build Rust APIs and

structures from C/C++ headers, used by several of the following

tools.

 • cbindgen: This tool functions in the opposite direction,

generating C headers from Rust functions so that Rust

functions can be called from C/C++.

 • CXX: This tool provides facilities for safe interoperation

between Rust and C++, enabling you to define Rust functions

and types that are callable from C++ and vice versa. The benefit

of CXX over bindgen/cbindgen is that it is used to creating new

APIs and thus limits what can be used over the FFI to things

that are common between both languages, resulting in safe

and straightforward interfaces on both sides.

 • CXX-Qt: This tool extends CXX to handle bidirectional use of Qt

and Rust, which is necessary when you’re trying to oxidize a Qt

C++ application.

 • AutoCXX: Similar to CXX, AutoCXX is used to safely implement

Rust and C++ interoperability, although it does this by using

existing C++ headers.

 • c2rust: This tool converts C code into Rust code. It doesn’t

create bindings but aims to replace C code with Rust, which

may be a better option for some smaller C libraries.

 • rustcxx: Mentioned for reference only, rustcxx is an obsolete

project that previously allowed the inclusion of inline C++ code

to Rust source files. Don’t use it – it no longer compiles, and it’s

12 KDAB — Trusted Software Excellence

not actively maintained.

 4.2. The Microservice Model

When using Rust and C++ together, don’t pass memory between

the two environments; keep C++ data on the C++ side and Rust

data on the Rust side. This will solve a lot of issues. Consider

going a step further by making separate loops on each side that

communicate via FFI calls. In other words, if your application

involves Rust calling into C++, create a microservice loop on the

C++ side that the Rust application can call into. Similarly, if it’s C++

calling into Rust, set up a Rust microservice for the same purpose.

The point of this extra layer of abstraction is to avoid thread

blocking and data ownership issues. It shifts the problem from

“I want to call this C++ code” to “I want to perform this service”.

A further benefit is that once you isolate your C++ code into

microservices – as abstracted functions with simplified APIs – they

become perfect candidates for oxidizing later.

 4.3. Rust, ABIs, and FFIs

The Rust compiler doesn’t use a consistently stable application

binary interface (ABI). While this might change in the future, it’s

how things are currently structured. Consequently, there are a

few guidelines to consider:

 • Create Rust applications as a single statically linked executable

rather than breaking them into multiple chunks, which is

common for C++ application layouts.

 • Use extern C FFIs to access Rust code when you have a design

pattern where software on either side of the divide may come

from different Rust compilers (for example, shared libraries,

plug-ins, etc).

 • Compiling something as big as Rust itself is not for the faint of

KDAB — Trusted Software Excellence 13

heart, so use a consistent Rust version throughout your entire

project, including all Rust crates. This may mean backporting

libraries to an older version of Rust that’s supported by your

Linux build, with the exception of pieces isolated behind a C

FFI, where the Rust version shouldn’t matter.)

 4.4. Build Systems

When it comes to building applications that combine Rust and

C++, there are several options. We’ve listed these in increasing

order of capability – and complexity. Select the earliest approach

on this list as your project can tolerate.

 • Cargo. If your main application is in Rust, and you’re not using

too much C++, then you can use Cargo (the Rust package and

build manager) to manage your whole build. While this is a

great place to start because it’s simple, it does require manual

editing of C++ dependencies in a crate build script. If your

project has a lot of C++ code and demands frequent script

editing, you may want to consider another option.

 • CMake. When managing more C++ code than just a couple

of libraries, a small step in the right direction is to have

Cargo launch CMake to handle the C++ stuff. This approach

can simplify your crate build script and reduce the need for

frequent modifications. CMake is also a good choice if your

C++ application contains Rust pieces. In this case, you use

CMake to call cargo for package management rather than build

functionality.

 • Bazel/Buck2. If your code base starts to get more complex,

you could move to a build system that is aware of both

languages such as Bazel or Buck2. (In fact, Google created

Bazel and Meta created Buck/Buck2 for just such a reason.)

These systems handle both languages, treating Rust and C++

as equal entities. This results in several benefits, like consistent

14 KDAB — Trusted Software Excellence

local/remote execution and test invocation, letting you make

complex and custom build systems.

 • Custom. Of course, there’s always the custom option, which

is to create your own build with a mix of scripts, existing

makefiles, and custom code. Given the availability of high-

quality, freely available build tools, this approach is less

common but worth mentioning.

KDAB — Trusted Software Excellence 15

What is KDAB’s Software Development Best Practice series?
This series of whitepapers captures some of the hard-won experience that our senior engineering staff has
developed over many years and projects. Offered up as a grab bag of techniques and approaches, we believe
that these tips from KDAB engineers and other industry experts have helped us improve the overall development
experience and quality of the resulting software. We hope they offer the same benefits to you.

View all the parts of this whitepaper series online at: www.kdab.com/publications/bestpractices/

16 KDAB — Trusted Software Excellence

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for

architecture, development and design of Qt, C++ and OpenGL

applications across desktop, embedded and mobile platforms.

KDAB is the biggest independent contributor to Qt and is the

world’s first ISO 9001 certified Qt consulting and development

company. Our experts build run-times, mix native and web

technologies, solve hardware stack performance issues and

porting problems for hundreds of customers, many among

the Fortune 500. KDAB’s tools and extensive experience in

creating, debugging, profiling and porting complex applications

help developers worldwide to deliver successful projects.

KDAB’s trainers, all full-time developers, provide market leading,

hands-on, training for Qt, OpenGL and modern C++ in multiple

languages.

www.kdab.com

© 2023 the KDAB Group. KDAB is a registered trademark of the

KDAB Group. All other trademarks belong to their respective

owners.

