
Nathan Collins | Senior Software Engineer, KDAB

Designing Your First
Embedded Linux Device 4

The Development Environment

2 KDAB — the Qt, OpenGL and C++ experts

KDAB — the Qt, OpenGL and C++ experts 3

Before creating your first embedded Linux device, you need to
determine how you want to build your software. After all, the tools
and development processes for embedded Linux may be quite
different from what you’re used to with smaller microcontroller-
based or bare-metal systems. If you want a well-designed, easy
to maintain, and cost-effective solution, take the time to research
your options and keep in mind the following key considerations.

Programming language

If you’ve been working with a PIC or microcontroller, you’ve
probably been using C or even a custom C-like language. You
could still do C for your Embedded Linux application, but there
are many more options available – many with more modern
features that make coding more concise, concurrent, and fail-safe.
Let’s look at three of the most interesting choices for embedded
development.

 • C++. This is the clear successor to C although it scares people
off with its infamous complexity. Yet with its unparalleled
flexibility, excellence in creating optimized code, and ability
to access low-level internals, C++ is the go-to choice for
most embedded engineers. It’s also the choice for many
library vendors since APIs for most third-party content are
easy to access. The C++ standards body has been working
hard to make the language easier and more foolproof,
with newer, simpler, and better programming constructs
and idioms in C++11, C++14, C++17, and C++20. If you’re
considering a “traditional” route and using C++, you owe
it to yourself to brush up on these newer C++ standards.
Modern C++ has things like automatic strong typing, template
metaprogramming, and lambda functions, making the bulk
of coding much more pleasant, and leaving gory details still
accessible when you need them.

4 KDAB — the Qt, OpenGL and C++ experts

 • Rust. Relatively new to the embedded scene, Rust is another
consideration to create your embedded software stack. It
has some fantastic bug-avoidance features built-in to the
language, such as guaranteeing safe memory accesses and
safe concurrent thread operations. It also creates fast code,
can access low-level hardware, and is compatible with C APIs,
just like C++. The Rust ecosystem isn’t yet as large as C++, but
with these attractive features, we are seeing more interest and
uptake.

 • Dart. The newest language competing for your embedded
software source is Dart, which is a programming language
created by Google. Similar to other modern languages like
Kotlin or Swift, it is designed to maximize productivity while
minimizing programmer error. Unlike those options, Dart is
cross-platform and includes a cross-platform UI option, Flutter.
We expect Dart/Flutter use within embedded to keep growing.

Libraries and dependencies

Most software projects aren’t completely in-house because it
doesn’t make sense when there are so many tested open-source
options that others have already built to do the hard stuff like
regular expressions, context-free parsing, fast-Fourier transforms,
digital filters, matrix math, machine learning, encryption,
authentication, and many more.

So, the biggest question is – are any of the tools you need
already supported on your chosen platform? They can be part
of a distribution already or perhaps enabled by a configuration
line or two in your yocto build. Or, you can get any necessary
components on your system via a package manager (like apt-get,
rpm, or yum) or a universal distribution manager (like flatpak or
snap). For a first time Linux build, you probably want to avoid
getting everything yourself. Afterall, it’s the modern era; let tools
get the source zips and dependencies that you need.

KDAB — the Qt, OpenGL and C++ experts 5

Licensing

When building your embedded Linux software stack, a smart
engineering team will leverage as much software as it can from
multiple sources. Much of this will be open source and, while
that’s great, staying on top of the licensing requirements is also
something that’s easily overlooked. There are many common
licensing policies with differing requirements and/or restrictions,
such as GPL 2, GPL 3, LGPL, BSD, MIT, and Apache, Your licensing
terms may require you to publicly list contributions, make source
code available, or submit back fixes – among other obligations.

It’s important to have someone (or something) track all the chunks
of software that are going into your build. Dedicate someone
on the engineering and legal sides for this to make sure that
your company is adhering to licensing terms properly. You can
automate some of this too: companies like Synopsys (with Black
Duck) and BlackBerry (with BlackBerry Jarvis) offer software
solutions that scan either your code base or your executables to
provide a comprehensive view of your third party components in
use and their requisite licensing responsibilities.

Yocto also produces a license manifest for you where you can
allow or deny certain types of licensing models as your corporate
needs dictate. Given the tedium of this task, these types of tools
can often examine your code more thoroughly and consistently
than a person would.

Multi-platform

The software you’re building may need to run on more than one
target. A few common examples:

 • Emulation/Virtual Machine. If you do much of your testing
and debugging on a PC, you’ll need an “emulator” build that lets
you run your application in a virtual machine in a Linux desktop
or container. This will output an executable rather than a build

6 KDAB — the Qt, OpenGL and C++ experts

image and will need to provide custom low-level software
components that can emulate or fake dedicated hardware.

 • Multi-board. Your product may have different options (such
as screen size and/or capabilities) that drive it onto different
boards. Each new board variant needs a dedicated build, which
can greatly expand the amount of time and space your build
consumes.

 • Mobile. Some of your software may run on a companion
mobile app, especially if there is a remote configuration,
reporting, or user interface component. Since “bring your own
screen” is a simple way for manufacturers to reduce cost, your
product may need a downloadable app that accompanies your
product and that shares some of the same libraries or product
definitions. These companion mobile apps may require you
to build some iOS and Android components, if not the full
application, at the same time you’re doing the embedded builds
to ensure they’re paired together properly.

If you’re building on multiple platforms, decide if you need
to cross-compile every platform on every commit. While this
ensures you’ll always have up-to-date software for every variant,
it can lengthen the full build cycle significantly. You may decide
to reserve certain build platforms for a daily (or longer) build
cadence.

Building and testing

You need to set up a build system, a dedicated build computer,
build scripts, and notification systems. Make sure that one
person is definitively responsible for the build system and build
infrastructure.

Since it’s the easiest way to quickly spin up, many systems start
out with a traditional build (especially with a small development
team). But moving to a continuous integration (CI) system has its
benefits. CI makes demands on scaffolding that can seem like a

KDAB — the Qt, OpenGL and C++ experts 7

lot of extra effort such as an automated build, full unit testing,
and automated test scripts. However, these methodologies
significantly help move the software forward with fewer bugs,
more reliable releases, and more confident and speedy
maintenance changes. If you’re developing with sufficient rigor
anyway, most of what you need to implement CI will already be
in place; creating unit tests and automated test scripts should be
part of your development timeline and having an automated build
procedure is mandatory to ensure reliability.

Besides just automated or unit tests, you should also do
integration testing and user interface testing. Although a bit
harder, these too can be predominately automated. And don’t
fall into the trap of assuming everything that runs properly in
an emulated desktop environment will work as smoothly on
the board. Your test scaffolding should include hardware target
download and test cycles too.

Debugging

Finding software bugs can be a challenge during development and
is much trickier when problems are only encountered in the field.
Since every tool has situations where it works well and others
where it doesn’t work at all, you want to get as many debugging
tools as possible to help.

 • Hardware. While a company usually has limited access to
hardware tools like digital oscilloscopes, you can find decent,
simple scopes on eBay for a reasonable amount of money.
There is nothing as concrete as a scope for confirming some
hypotheses; in fact, they can be invaluable. Even simply
monitoring a single pin output with a scope can verify if code
gets to a certain critical point without introducing the timing
delay of a log. It can also verify if your interrupt is getting
triggered multiple times and can confirm precise timing and
correlation between two events. A knowledgeable engineer
with a scope can do much more.

8 KDAB — the Qt, OpenGL and C++ experts

 • Debugger. This is often a GUI-powered debugger that’s part
of an IDE, but it can also be a standalone application or even
a text-only interface. Whether you’re debugging on-target or
executables in an emulated/virtual machine environment, a
debugger allows you to watch code execute, set breakpoints,
monitor or change variables, and see thread activity – all
extremely helpful for figuring out issues. There are a number
of situations that are problematic for debugging, however,
regardless of whether it’s on-device or on your desktop.
Anything with timing dependencies, from hardware timing
responses to microservice timeouts, are nearly impossible to
debug in this environment. You may be able to make a special
build that disables all timeouts and sets hardware timers to
their maximum – but this obviously changes the software and
can make heisenbugs go away. Similarly, optimized code rarely
has a one-to-one correspondence to source lines of code. This
means that to understand code execution paths, you often
need to debug using a non-optimized build, and the changes it
makes to the resulting executable can make subtle problems
disappear. (This is why you need a few different tools in your
tool chest.)

 • Static analysis. Static analysis isn’t good for finding an
isolated bug but rather for finding many undiscovered bugs.
There are many of these tools available – from commercial
to open-source offerings – and they can make a tremendous
improvement to your code quality. The biggest challenge is
often adding them to an existing code base, because they can
flag a massive number of issues that need to be investigated
while often only a tiny fraction of these turn out to be legitimate
issues. If you’re starting out, we recommend adding a static
analysis tool from the very beginning so that your software is
continually being checked as the code base accumulates in
size. This maximizes your benefit and prevents the pain from
being experienced all at once.

KDAB — the Qt, OpenGL and C++ experts 9

 • Run-time checkers. A run-time checker is used for types of
hard-to-detect behavior that can be caught by instrumenting
the code. One prominent example is to track memory
allocations, ensuring that they’re all correctly allocated, freed,
and not improperly overwritten. It can also be used for things
like run-time array index checking or system API parameter
checks. All of these applications obviously carry a run-time
penalty, but because they’re so useful to find certain classes of
bug, they should be a definite consideration for your toolkit.

 • Application profilers. These tools aren’t usually used to find
bugs in the literal sense. However, a performance failure is a
defect that requires fixing before release, and an application
profiler can help you understand where and how code needs
to be changed to extract more speed out of critical bits of code.

 • System profilers. This profiler lets you see interactivity
between multiple applications running in the system. A system
profiler can also show interactions with hardware (such as disk
writes or interrupts) that initiate certain software behaviors.
While system profiler traces can be complex to interpret, they
are the tool of choice for full-stack gurus since they provide a
holistic view of system execution.

 • Logging. The simple “printf” has long been the bare minimum
of debugging assistance, and it remains a well-used tool for
a few reasons. Logging can be added exactly where needed
to confirm or investigate code flow and/or variable content.
Logging can be left in production products allowing in-field
failures to be partially diagnosed. And because it is dead simple
to implement in its easiest form, logging is always the first
debugging assist. However, logging often ends up gathering
many more sophisticated requirements, like differing log levels,
module-controllable enablement, log file rotation, caching
and file flushing, and remote retrieval. Excessive logging can
introduce issues too, from excessive disk storage or wear,
slowing down parallel file system accesses, introducing

10 KDAB — the Qt, OpenGL and C++ experts

significant timing delays, and other unexpected side-effects.
While it’s tempting (and perhaps fun) to create your own
logging library, look around for existing ones that meet your
needs first. (Of course, check these for licensing models that
are compatible with your legal department.)

Summary

Building your first Embedded Linux device is not easy. Hopefully
this guide gives you a good feel for the many things you need
to consider. Our engineers have deep expertise in all aspects of
embedded product development so please don’t be shy to reach
out if you have any questions or need help at any point in the
process.

KDAB — the Qt, OpenGL and C++ experts 11

This is the fourth whitepaper in a series of four that covers planning
considerations and lessons learned in building embedded devices
with Linux. Each whitepaper addresses a specific portion of the
development lifecycle, so you can easily focus on the guide most
relevant to your current stage of development. If you don’t find the
advice you need in this whitepaper, check out our first, second, and/or
third whitepaper in the series.

View the four parts of this whitepaper online:
www.kdab.com/publications/embeddedlinux/

12 KDAB — the Qt, OpenGL and C++ experts

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for
architecture, development and design of Qt, C++ and OpenGL
applications across desktop, embedded and mobile platforms.
KDAB is the biggest independent contributor to Qt and is the
world’s first ISO 9001 certified Qt consulting and development
company. Our experts build run-times, mix native and web
technologies, solve hardware stack performance issues and
porting problems for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex applications
help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market leading,
hands-on, training for Qt, OpenGL and modern C++ in multiple
languages.

www.kdab.com

© 2020 the KDAB Group. KDAB is a registered trademark of the
KDAB Group. All other trademarks belong to their respective
owners.

