
Nathan Collins | Senior Software Engineer, KDAB

KDAB’s Software
Development Best Practices

Embedded Development

2 KDAB — the Qt, OpenGL and C++ experts

KDAB — the Qt, OpenGL and C++ experts 3

The software engineering community has learned hard lessons
over time about the best way to build software. Following these
tried-and-true practices provides a huge number of benefits:
more resilient software, faster release schedules, higher quality
products, more effective teamwork, and happier developers.

Unlike a lot of modern development, embedded development is
close to the hardware. It runs on specialized boards, uses custom
testing harnesses, requires expensive debugging equipment, and
has its own characteristic workflows. That hardware dependency
makes embedded development unique. Here are a few of the
best practices that we try to use in our embedded development
projects.

1. Hardware

 1.1. Board selection

We’ve talked about this in our whitepaper, Designing Your First
Embedded Linux Device, but hardware selection at the beginning
of an embedded project is critical. The choice very often uses cost
as one of the primary selection factors. Which of course makes
sense; every dollar you spend on product manufacturing is one
more dollar you must charge your customers, making you less
competitive, or one less dollar you can realize in profit.

Nothing comes for free though – that cheap hardware does
come with a cost. Your product’s software can only use the
resources that are available. Just be aware that when you
minimize hardware bill-of-material (BOM) costs, you are likely
making for more expensive software, longer development time,
or a poorer user experience. We think you should consider more

than price when selecting your hardware. Specifically, weigh your
hardware selection against potential development timelines,

4 KDAB — the Qt, OpenGL and C++ experts

engineering effort, and eventual customer impacts. You can do
this with specific feature prototyping to gauge whether your
product’s feature set will fit the desired hardware platform. It’s a
good idea to give yourself a bit of head room – more CPU, RAM,
storage, and capability than you might minimally need – so you
can implement new features and product refreshes without a
hardware replacement.

 1.2. Timing and availability

Embedded software ultimately lives on embedded hardware.
That means access to the real production hardware will always
be a gating factor. Tools like emulators and virtual machines
(VMs) can mimic the real thing, but they aren’t identical to
your hardware running in a real physical box; the peripherals,
performance, characteristics, and environment will always be
subtly different between these tools and the real thing. This
can hide performance and integration issues until late in the
development cycle. Plus, VMs require a different set of drivers
and configurations than the target hardware and are likely to
have limitations on what can be tested since some things aren’t
easily emulated.

BUDGET HARDWARE EQUALS BUDGET UX
No matter what device people use today, it’s a given that they expect a smartphone-like experience with a smooth
and sophisticated UI. Most embedded manufacturers also want that polished look for their own products. This
includes one of our customers who went with an inexpensive, relatively lightweight processor on a third-party
recommendation. However, smart phones aren’t designed with a lightweight processor – they’re loaded with a
fast, capable ARM64 multicore processor, a high-powered GPU, and plenty of RAM.

We were brought in to help because their software team was struggling for months to make that underpowered
chip deliver the smooth animations and subtle gradients their UI team had designed. After some analysis
and targeted tests, we determined that there was no amount of optimization that could deliver smartphone-
like features due to constrains on processing power and a lack of hardware accelerated graphics. Instead, we
recommended a drastically simplified UI that eliminated all the bells and whistles. While this client ended up with
a functioning product in the end, they had to settle for a poorer UX than they had originally envisioned.

KDAB — the Qt, OpenGL and C++ experts 5

All that leads most embedded companies to get hardware for
the developers as soon as possible. That’s a necessary first step,
but we also recommend that you acquire adequate hardware

resources for testing purposes. Early testing on hardware is
critical to identifying performance or integration issues, which
desktop simulation or cross-platform builds aren’t good at
uncovering. Your test team needs access to that precious and
limited hardware resource to be effective, just like a properly
functioning CI/CD test environment does. Don’t create two
classes of engineers – with and without hardware – as that will
naturally inject delays and scheduling conflicts.

2. Tools and tooling

 2.1. Automation

We’ve talked about the importance of automation in our
Software Development Best Practices: General Development
whitepaper; in fact, it’s the first recommendation we make
in it. Embedded development has some singular attributes
that make this even more important. It uses special tools,
applications, and processes for accessing the hardware. These
each contribute to longer times for developers being productive
and require more expertise.

You can eliminate a lot of the the hardware-incurred developer
penalties if you automate all hardware-specific tasks. We’re talking
about things like putting the application on the board, starting the
debugger, resetting the application in a fresh state, gathering log
and crash data, loading up particular configurations, and restoring
the OS from a known-good image. Anything that you need to
onboard a new engineer should be automated, as well as all daily
development tasks and anything required by the test workflow.

6 KDAB — the Qt, OpenGL and C++ experts

3. Development

 3.1. Prototyping

We touched lightly on this in section 1.1, but prototypes are
essential for embedded. Because switching software and
hardware strategies late in the project are exponentially
more costly, you need the quick insights into specific
concerns that prototypes give you to iron out trouble spots
early in the project. Your prototypes don’t have to mimic the
final product or large, complex endeavours. Instead, develop

targeted prototypes that run on the embedded hardware
to confirm and fine-tune questions about your hardware
selection, software performance, integration strategy, and UI
design. Some examples of reasons we might prototype:

 • Checking overall performance characteristics of a
particular combination of hardware and software
framework to ensure they fit design expectations

 • Benchmarking critical hardware functionality to see how
well execution speed on a system/board compares against
chipset data sheets

 • Validate user workflow and user experience questions with
a “dummy” UI to point out areas of confusion or invalid
user assumptions

 • Estimate memory high-water marks to get a guess
about memory sizing or an early warning on memory
consumption issues

Your prototypes give you confidence that you can identify
issues before they become show-stoppers. Prototype code
doesn’t have to be throw-away either – if you’re using it to

KDAB — the Qt, OpenGL and C++ experts 7

validate your hardware or software, you can bring it back out
to retest if you change the underlying components.

 3.2. Integration

A big source of heartburn can be the integration step –
you’re throwing away the scaffolding and weaving together
software that’s been developed separately. Lots of pieces
of your own software are often built with separate teams:
software stack, user interface, main application, backend,
services, etc. It’s always tempting to put off the pain. That’s
true too with third parties whose software update cadence
might not match yours. However, we recommend that you
integrate early and often. That gives you time to identify and
fix issues that cannot be found in individual unit tests and
might otherwise not be found until pre-release.

 3.3. Optimization

Most programmers have heard “premature optimization is
the root of all evil,” a saying that’s been around since Donald
Knuth uttered it in the 1960’s. So why are we still doing it?
It’s common that we find developers optimizing algorithms
without clearly identifying specific performance problems
first. Nowhere is this more important than on embedded
devices where many different hardware and software
subsystems can contribute to performance issues.

We’re not saying don’t optimize, but rather don’t optimize

until you fully understand the problem. Use profiling tools
like perf and hotspot, system-level profilers, and memory
profilers to be certain you know what performance issues
you’re facing. Then you can tackle the problem with a clear
strategy and develop benchmarks to detect and prevent
future regression.

8 KDAB — the Qt, OpenGL and C++ experts

4. Architecture

 4.1. OS selection

Embedded projects come in all shapes and sizes. But if you
know how to whip up a Yocto project build image, you’ve
got yourself a good hammer for every new project that now
looks like a nail. But don’t fall into the trap of using that same
old hammer; it’s important to pick an OS that’s appropriate

to your project. What does that mean? We’re not going to get
into the technical weeds on the OS selection but here are
some things to consider:

 • Should you use Yocto? Yocto is amazing and we use it
regularly. But it outputs a custom Linux distribution. That’s
a lot of components and configuration that you might not
need that just add complexity to your project. You might
be able to get away with a simpler install and switch to
Yocto if project flexibility becomes a priority.

 • Should you use buildroot? One step down from Yocto
is buildroot. If you don’t need ultimate configurability of
everything and need a simpler tool to manage your OS,
then buildroot is a better choice.

BYTE-WISE AND MEGABYTE-FOOLISH
We worked with a customer who ran into memory constraints and had highly optimized their application’s
search function. It required 200 entries maximum, and they were able to trim teach entry down to 1Kb for a total
maximum of 200Kb. However, they were still running into memory issues. We profiled the application’s memory
and noticed that they had accidentally used a wasteful file format for a background image that was needlessly
taking up 12Mb. Fixing the background image with a simple image conversion could have given them an easy win
and saved their team a huge amount of work.

KDAB — the Qt, OpenGL and C++ experts 9

 • Should you customize your OS? If you’re using off-the-shelf
boards, maybe the OS install that’s already on them will
work if you don’t need anything special. If you can add a
driver you need and those couple of missing packages,
maybe that’s enough. Sometimes you can get exactly what
you need by packaging your application in containers or in
a package suitable for your Linux distribution.

 • Should you use Linux? Maybe you don’t even need Linux.
If you’ve got special certification needs, require hard real-
time, or need to run on severely limited hardware, you’ll
probably need another choice of operating system, tool
chain, and vendors.

5. Testing and debugging

 5.1. Test cadence

We know that desktop processors and CI/CD infrastructure
are going to be so much faster than the product hardware
that you’ll get test results back in a fraction of the time. It’s
the nature of the beast. But you need to regularly run your

test and benchmark suite on your embedded hardware,
at least nightly. Otherwise, you might not notice that the
team has introduced regressions into software during
development until much later.

 5.2. Full stack

Understanding the full software stack – hardware, OS,
drivers, services, libraries, application, and user interface –
is always helpful. But in embedded there is nobody else to
pass the buck; your team is responsible for debugging and
fixing any issues. That’s why we know that to be successful,
you must develop the expertise to debug and troubleshoot

10 KDAB — the Qt, OpenGL and C++ experts

throughout the full stack. Be comfortable working within the
stack and understand which tools can target which layers,
like strace, heaptrack, or lttng.

 5.3. Hardware Abstraction

Almost by definition, an embedded system has hardware
– GPIOs, A/Ds, USB-connected modules, SPI devices, you
name it. However, because you won’t always be running
your application on an embedded board, you should have a
hardware abstraction layer (HAL) for your peripherals with a

software mock-up behind it. In some cases, you might need
to design an API that can hide the hardware first. (It doesn’t
need to be complex or handle all cases; something simple
is sufficient.) In other cases, you may be able to leverage an
already existing clean API that abstracts away the hardware.
In either case, you’ll need to create a set of suitable software
stubs that mimic the hardware interface.

All you’re trying to do is ensure that you preserve the
ability to build and run your application in a desktop or
cloud environment. Of course, you don’t need to replicate
the functionality of the hardware – that’s overkill. Just add
enough logic so the calling functions aren’t surprised with
unexpected sequences of states or bad return codes.

BLACK IS NOT THE NEW BLACK
One customer of ours had prototype hardware that ran perfectly. However, once they received their first pre-
production run of 150 devices, they tried to fire them up. The final production displays were supposed to be
brighter, but wouldn’t turn on – they remained black. They called us in a panic – once we had done some digging,
we discovered that the Linux GPIO driver had a setting that wasn’t compatible with one of the display pins firing up
the display. A 100ns timing change was all that was needed to get the displays working properly.

KDAB — the Qt, OpenGL and C++ experts 11

You’ll probably want to skip testing any of these stubbed-out
“hardware” routines in desktop runs. However, be sure you
test the real hardware APIs in nightly CI runs so you’ll still get
enough warning if something breaks due to code changes
during the day.

What is KDAB’s Software Development Best Practice series?
This series of whitepapers captures some of the hard-won experience that our senior engineering staff has
developed over many years and projects. Offered up as a grab bag of techniques and approaches, we believe that
these tips have helped us improve the overall development experience and quality of the resulting software. We
hope they can offer the same benefits to you.

View all three parts of this whitepaper series online at: www.kdab.com/publications/bestpractices/

12 KDAB — the Qt, OpenGL and C++ experts

About the KDAB Group

The KDAB Group is the world’s leading software consultancy
for architecture, development and design of Qt, C++ and
OpenGL applications across desktop, embedded and mobile
platforms. KDAB is the biggest independent contributor to
Qt and is the world’s first ISO 9001 certified Qt consulting
and development company. Our experts build run-times,
mix native and web technologies, solve hardware stack
performance issues and porting problems for hundreds of
customers, many among the Fortune 500. KDAB’s tools and
extensive experience in creating, debugging, profiling and
porting complex applications help developers worldwide
to deliver successful projects. KDAB’s trainers, all full-time
developers, provide market leading, hands-on, training for
Qt, OpenGL and modern C++ in multiple languages.

www.kdab.com

© 2023 the KDAB Group. KDAB is a registered trademark
of the KDAB Group. All other trademarks belong to their
respective owners.

