
David Faure | Managing Director KDAB France

KDAB’s Software
Development Best Practices

Desktop Development

2 KDAB — Trusted Software Excellence

The software engineering community has learned hard lessons
over time about the best way to build software. Following tried-
and-true practices provides a huge number of benefits: more
resilient software, faster release schedules, higher quality
products, more effective teamwork, and happier developers.

While desktop development shares a lot of best practices
with other types of software, a few things make it stand apart.
Development of an application that sits on a user’s desktop, no
matter what that consists of, requires a flexible design. Desktop
applications are bigger than programs for embedded and IoT
and they demand an architecture more complex than server or
cloud apps with their tightly controlled environments. Here are
some of our best practices for building these complex desktop
applications.

1. Cross-platform

 1.1. Multiplatform Builds

Targeting multiple operating systems is much more common
in the desktop realm than in the embedded space. And even
though it adds to your server build times, you should always
build all platforms in your CI workflow. It’s easy to introduce
changes that work fine on your development OS but break on a
different OS, forcing other platform developers to fix your bugs.
Ideally, your CI system would build each platform as part of the
pre-commit checks so developers can commit code that works
consistently.

Another reason to build on all platforms is that you benefit from
behavioral differences of each platform’s compilers. Compiling
your code with all platform-specific compilers forces you
to write standards-compliant code and ensures that you get a
diversity of warnings. Different compilers are better at detecting

KDAB — Trusted Software Excellence 3

different types of errors, so ensuring that you have no warnings
on any compiler helps improve code quality.

 1.2. Adding Linux

Desktop applications generally need to be built for Windows and
Mac OSX. But even if you don’t intend to support Linux users,
it’s a good idea to build your project under Linux too. Not only
because of additional compiler code validation and warnings as
mentioned above, but because a large number of developers
live in the Linux world. Including this OS in your build means
any Linux developers on your team may be more proficient and
productive, especially if they are able to use many of the open-
source debugging and profiling tools that Linux has available.

In fact, regardless of developer skillsets and tool availability, the
best idea is to always build on all three main platforms if possible.
That gives your team the widest available suite of static analyzers,
runtime memory checkers, optimizers, debugging tools, and
compiler options to bring to bear on making a great product, not
to mention making it available to the widest number of users.

2. Cross-device

 2.1. Screen Resolution

Why do you need to worry about screen resolution? The OS
mostly insulates your app from worrying about a diversity of
display or GPU issues, and GUI frameworks and toolkits (Qt
and most others) make it easy to adapt to changing screen
resolutions. But because screen resolution can vary widely and
produce vastly different results, you still need to actively manage

and test against the range of resolutions your app will support.
Decide on what your application’s minimum resolution is and
test all your app’s features at that resolution to ensure dialogs

4 KDAB — Trusted Software Excellence

are all on screen, windows have scrollbars when needed and
can be scrolled to reach all content, and buttons or controls
aren’t placed in unreachable off-screen areas. Make sure you
have the other extreme covered too by keeping a 4K, 8K, or
higher resolution monitor in the design and testing mix. Test
your application on high DPI screens to ensure text is readable,
controls are visible, and regions are large enough to click. Also
check that all dialogs can be user resizable and that your layout
manager changes field layout in an intelligent way – in other
words, useful for the user and in a way that still looks designed.

 2.2 . Monitors

Desktops today will often have more than one monitor – even
for non-power-users. Make sure that your application can use
a multi-monitor configuration to its advantage by giving it the

ability to create separate windows for many of your application
features. That lets work be distributed as users see fit across
those monitors, whether your app has dockable toolbars,
preview windows, specialized editors, project notes, inspectors,
configuration panels, or other features. By letting your users
create windows that can stay open while separated from the
main application window, they can maximize their monitor
space and arrange content as needed for their workflow.

3. Size

 3.1. Speeding up big builds

Desktop apps tend to be loaded with features. That means
more lines of code, which means more time waiting on
compilers. Considering multi-platform, unit tests, and CI build
systems that build all variants in a single build, you’ve got
yourself a lot of compile time on your hands. Thus, it makes

KDAB — Trusted Software Excellence 5

sense to do everything reasonable to reduce compilation

time. Extra seconds in the build increases the length of the
code/build/test process across the entire team. Make sure
you have pre-compiled headers turned on and your build
tree is set up to use them. If you’re not using it already,
investigate ccache. This can save a huge amount of time by
reusing cached compiler results if files haven’t changed. If
you’ve got a setup that supports it, you can also consider
using a distributed compiler to split the build task onto
multiple computers.

 3.2. Multithreading

Building multithreaded apps always requires a bit of care
to prevent corrupted data or data races. That’s why it’s
important to document your multithreading approach for
every variable, object, or class. In other words, comment
which variables are being used in which threads and
which mutex or synchronization object is protecting each
variable. This accounting takes a bit of time but can be
tremendously worth it. By knowing the author’s intent and
how their synchronization is intended to work, you can
avoid introducing inadvertent multithreading bugs that can
be extremely difficult to reproduce and fix. Another way to
fight multithreading issues is to use a thread sanitizer. This
compiler tool adds runtime and memory cost to perform
its testing, but it can help detect and avoid data races that
are the bane of multithreaded programming.sts and might
otherwise not be found until pre-release.

 3.3. Plug-ins

Desktop apps often need to be extended with third-party
or other optional features, requiring a plug-in based
architecture. But to make plug-ins effective, you have to

6 KDAB — Trusted Software Excellence

ensure they have access to all the bits that make them work
properly. That often requires continually expanding the
scope of the plug-in interface. In turn, this drives a desire to
make nearly everything in the program a plug-in since that
approach ensures the plug-in APIs are all being properly
exercised and are complete. However, if you’ve ever built
an application with plug-ins, you know that they introduce a
number of problems into development. Plug-ins can prevent
cross-application compiler optimizations, and because plug-
ins run as modules loaded by the application, they can be
very difficult to test and debug.

If you need to incorporate plug-ins, make sure that you
design plug-ins to add features that are truly optional, and
bring all other functionality into the main development
branch. This helps you keep the plug-in scope from taking
over the entire application and turning development into an
awkward and slow process.

4. Environment

 4.1. Configuration

Desktop applications might need remote configuration
troubleshooting, and that’s why it’s important to have a text

editable configuration instead of in a database, binary file, or
Windows registry. That lets support staff coach a fix over the
phone or send a replacement “safe mode” configuration that
resets potentially bad settings. Whether it’s XML, INI, plist,
or a custom text format, a text configuration helps ensure
that your configuration has the same simple editing behavior
on all platforms. It also allows you to offer customization
of esoteric setting options, saving you from building a
potentially complex GUI dialog that would get used by a tiny
fraction of your user base.

KDAB — Trusted Software Excellence 7

 4.2 Shared Libraries

When you’re decomposing your application, if you architect

chunks of the application as shared libraries, it makes
it easier to unit test those subsystems. Link your main
application and test executables to shared libraries, not
statically linked libraries, to help save space and build time
for developers. It will also make it easier for you to create a
distributed application where there may be several primary
components, and to distribute patches to your user.

What is KDAB’s Software Development Best Practice series?
This series of whitepapers captures some of the hard-won experience that our senior engineering staff has
developed over many years and projects. Offered up as a grab bag of techniques and approaches, we believe that
these tips have helped us improve the overall development experience and quality of the resulting software. We
hope they can offer the same benefits to you.

View all three parts of this whitepaper series online at: www.kdab.com/publications/bestpractices/

8 KDAB — Trusted Software Excellence

About the KDAB Group

The KDAB Group is the world’s leading software consultancy
for architecture, development and design of Qt, C++ and
OpenGL applications across desktop, embedded and mobile
platforms. KDAB is the biggest independent contributor to
Qt and is the world’s first ISO 9001 certified Qt consulting
and development company. Our experts build run-times,
mix native and web technologies, solve hardware stack
performance issues and porting problems for hundreds of
customers, many among the Fortune 500. KDAB’s tools and
extensive experience in creating, debugging, profiling and
porting complex applications help developers worldwide
to deliver successful projects. KDAB’s trainers, all full-time
developers, provide market leading, hands-on, training for
Qt, OpenGL and modern C++ in multiple languages.

www.kdab.com

© 2023 the KDAB Group. KDAB is a registered trademark
of the KDAB Group. All other trademarks belong to their
respective owners.

