Windows CE to Embedded
Linux Migration

A Practical Guide

Mitosz Kosobucki
Senior Software Engineer

KDAB | Trusted Software Excellence

Contents
Why migrate from WINAOWS CE ...t 3
WY LINMUX? 1ot 3
Strategies for migrating your apPIHCATION ..o 4
IMHEIATION VS TEWITTE ..ttt 4
Preparation fOr MUGIATION ...t 4
PrEPANNG TNE COUR ..ot 4
PrepariNg the PEOPIE ...t 5
THE QCEUAN MIGIATION ...ttt 5
BUSINESS TOZIC ..ttt 6
USEI TINEEITACE ..o 6
OS and Nardware TOUCNPOINTSoiiiiiiie et 6
High level migration apPrOACNES ..o 6
StayiNg IN the SOUMCE [ANGUAEE ..o 6
SWITCNING @ TANGUAEE ... 7
Separating the GUI INtO @NOTNEr PrOCESS ... 7
LaNGUAZE-SPECITIC SCENATIIOS ...ttt 8
o ettt 8
Migrating from CH+ aNd QU ...t 8
Migrating from CH+ aNd MEC ..o 8
MIgrating the DUITA SYSTEIM ...t 9
Migrating from CH WITN WINFOINS ... 9
RePIACING WINAOWS FOIMNS ...ttt 9
WRAT GDOUL IMONO? 1.t 10
Migrating the OS tOUCNPOINTS ...ttt 11
ASSEMDBIING the OPErating SYSTEIMottt 11
System control with systemd (startup, reboot, date and tiMe)coooiiiiiieee s 11
Hardware communication: CAN, g0i0, I2C 1. @l ..o 12
e 12
o ettt 12
StOrage (SD €ards, USB SHICKS) ... et 13
REIMOTE GCCESS ...ttt 14
RO IS TIY e 14
TOUCNSCrEeN CalIDIrATION ... 14
Y TNSIGINTS .ttt 15

ALY S =T F PR RR 15

KDAB | Trusted Software Excellence

Why migrate from Windows CE
Windows CE was once a popular choice for embedded de-
velopment and still powers millions of devices, but it is clear-
ly showing its age. It no longer receives updates, support
ended in 2023, and Microsoft will stop selling new Windows

CE licenses after May 31, 2028 (https://web.archive.org/
web/20150410235645/http://www.microsoft.com/windowsem-
bedded/en-us/product-lifecycles.aspx).

If your business sells WinCE-based devices, you need to move
to another platform before this date. In the meantime, your
devices may already contain serious security vulnerabilities,
which is especially problematic in Europe in light of the Cyber
Resilience Act applying fully from December 2027, as manufac-
turers will then bear complete responsibility and liability for the
software they place on the EU market.

The time to act is now.

This whitepaper discusses the specific challenges of migrating
away from Windows CE and practical strategies for approaching
such a project, especially in areas that most embedded systems
have to deal with and which often cause problem when migrat-
ing from WinCE.

For more general discussion of migration projects, not specif-
ically related to WinCE, see KDAB's whitepaper on the subject:
https://www.kdab.com/modernizing-legacy-systems-brochure/.

Why Linux?
There are several platforms you can migrate to from WinCE,
including:

/- Windows loT - Microsoft's new offering for embedded
devices - some shortcuts are possible due to similarities
with the underlying OS. However, the application distribu-
tion model (UWP) and licensing is challenging. Not many
vendors offer Windows IoT based boards.

/- QNX - an established, robust OS with realtime capabili-
ties. Its licensing and runtime costs can be appropriate for
applications that explicitly require hard realtime features.

/ Embedded Linux

https://web.archive.org/web/20150410235645/http://www.microsoft.com/windowsembedded/en-us/product-lifecycles.aspx
https://web.archive.org/web/20150410235645/http://www.microsoft.com/windowsembedded/en-us/product-lifecycles.aspx
https://web.archive.org/web/20150410235645/http://www.microsoft.com/windowsembedded/en-us/product-lifecycles.aspx
https://www.kdab.com/modernizing-legacy-systems-brochure/

KDAB | Trusted Software Excellence

This guide focuses on the last one. Linux is an excellent choice
for embedded devices for the following reasons:
/ ltis scalable from tiny loT appliances to giant supercom-
puters and has proven its versatility for almost 35 years.
/ The majority of the software that constitutes the oper-
ating system is licensed with free/open software and
doesn’t require licensing fees.
/ Source code is available for the whole OS except for cer-
tain proprietary device drivers.
/ Due to Linux’'s popularity there is a large amount of learning
material and a vibrant community of users and developers.

The Embedded Linux ecosystem is broad and can feel over-
whelming, but with experienced guidance from a partner like
KDAB it becomes very manageable. Like your migration effort,
this whitepaper is divided into two parts:
/ porting your application to technologies supported on
Linux.
/adapting the OS specific parts so that they can talk to Linux.

Strategies for migrating your
application

Migration vs rewrite
As discussed in the “10 Step Guide to Software Migration” the

switch of technology may appear to be a good reason to start
with a clean slate and rewrite the application completely.

The problem with a full rewrite is, that it discards not just the
legacy code but also decades of accumulated bug fixes, edge-
case handling, and institutional knowledge expressed in that
code. In certain situations a rewrite is justified, but more of-
ten, if you can preserve the business logic of your product, a
migration is preferable. That is the perspective this guide takes.

Preparation for migration

Preparing the code

If you have followed best practices of software engineering, the
migration will become significantly easier.

A codebase that:
/is neatly layered, for example into Ul, business, data
access and hardware access

https://www.kdab.com/modernizing-legacy-systems-brochure/

KDAB | Trusted Software Excellence

“Give your teams
dedicated time
and space to learn
Linux: formal
trainings, small
prototype projects,
or internal
hackathons all
work well”

/is thoroughly tested with automated unit and integration
tests
/abstracts OS-specific APIs behind interfaces, ideally with
dependency injection
will be much easier to migrate than code that uses OS-specific
types throughout the stack or does not have a test suite that
lets you confidently make changes.

Refactoring towards this structure before starting the migration
is usually a good idea. It lets you change code more fearlessly
and often makes it possible to bring the business layer over

to Linux almost unchanged. But beware of the temptation to re-
factor and clean during the migration. You will end up with two
sources of problems.

Preparing the people

Because of its Unix heritage, Linux is very different from Win-
dows. If your company has been Windows-centric for a long
time, your employees are likely very accustomed to the Micro-
soft ecosystem.

Give your teams dedicated time and space to learn Linux: for-
mal trainings, small prototype projects, or internal hackathons
all work well.

Consider hiring developers with Linux expertise and encourage
them to share their knowledge through internal workshops.

Bottom line: Do not expect that Windows developers will “pick
up” Linux on the side while driving a migration. The differences
are substantial, and without proper onboarding you risk long,
frustrating debugging sessions that could have been avoided
with a basic understanding of the Linux environment.

The actual migration
Every embedded project is different, but from experience the
migration effort typically clusters around three major areas:

/ Business logic

/ User interface (Ul)

/ OS and hardware interactions

The cost of migrating each area depends on your existing
technologies and on how cleanly your code is structured. If the

KDAB | Trusted Software Excellence

Side note
If you think you need to abandon
C# because you are moving to

Linux there is good news. Read
more in the “Migrating from C#
with WinForms” section.

Ul communicates with the business logic through well-defined,
portable interfaces, migration will be much faster.

Business logic

In a well-architectured system, the business layer is often writ-
ten in a portable way and can be migrated with minimal chang-
es. Itis usually the layer that encodes most of your company’s
secret sauce. If it is not too coupled with the Ul and OS commu-
nication layers aim to keep it as unchanged as possible. If it is
entangled, first separate it from Ul and OS concerns, then start
the migration.

User interface

The Ul is often the most challenging part. It likely uses a graph-
ical framework that does not have a Linux equivalent. In such
case, a complete rewrite of this layer is required.

OS and hardware touchpoints

If you followed good practices, your business layer talks to the
OS through abstracted interfaces and does not make many as-
sumptions about specific implementation. This area is covered
in more detail in a later section.

High level migration approaches

Staying in the source language

If your application’s language is well supported on Linux, keep
it. You will need to adjust to a different toolchain and some im-
plementation details, but those issues outweigh the advantages
of keeping a known and trusted codebase.

Figure 1: Staying in the source language

KDAB | Trusted Software Excellence 7

During migration, stay as close as possible
to the original structure - even if that means
sacrificing the elegance and idioms from the
target language.

Switching a language

If your current language has poor Linux support, you may need
to rewrite your software in a different one. During migration,
stay as close as possible to the original structure - even if that
means sacrificing the elegance and idioms from the target lan-
guage. Mixing migration and refactoring is a recipe for disaster.
Only start adapting your code to the new language after you
have a working product.

Figure 2: Switching a language

Separating the GUI into another process

If there is no suitable Ul technology for the language used in
your non-Ul code and you want to avoid cost and risk of migrat-
ing that code to another language, you can move the Ul into a
separate process. The Ul then communicates with the rest of
the application over an inter-process communication solution
(IPC). This gives you more Ul technology options for the cost of
more complicated architecture. Async cross-process RPC will
always be more complicated than simple function calls and
callbacks.

KDAB | Trusted Software Excellence

Figure 3: Separating the GUI into another process

Although potentially costly, this approach makes it possible to
put the Ul on a separate device.

Language-specific scenarios
C++

Migrating from C++ and Qt

This scenario likely requires the least effort. Both C++ and Qt
are well supported on Linux, making the transition relatively
smooth. You will probably need to update to a more recent Qt
version, as the last one supported on WinCE is quite outdated.
Fortunately, Qt upgrades and modernization are familiar terri-
tory for KDAB, where you can rely on our proven expertise.

Migrating from C++ and MFC

If your codebase primarily uses standard C++ types and has
kept MFC dependencies out of the business logic, there is a
good chance the business layer can be migrated with minimal
changes.

The Ul layer, however, will require a complete migration. Suit-
able options that work well with C++ include:
/ Qt - a mature, crossplatform Ul framework. KDAB offers
dedicated MFCtoQt migration services with a gradual
approach and a compatibility layer that lets MFC and Qt

https://www.qt.io/

KDAB | Trusted Software Excellence

coexist during the transition for better testability. See
KDAB's whitepaper on the subject: https://www.kdab.

com/mfc-to-gt-migration/.

/ Slint - a declarative Ul toolkit gaining traction in embed-
ded scenarios, with strong C++ support and scalability
from powerful SoCs down to microcontrollers. KDAB has
been one of the earliest adopters and is an official service
partner for Slint.

/ LVGL - low level C library targeting primarily
resource-constrained hardware

Migrating the build system

WinCE C++ projects are typically built as Visual Studio solutions.
Those project files cannot serve as a native build system on Linux.
You will need to migrate to a Linuxcapable build system for C++,

with CMake being the defacto standard today. See: https://isocpp.
org/files/papers/CppDevSurvey-2025-summary.pdf. KDAB pro-

vides CMake expertise and training to get your team up to speed.

Migrating from C# with WinForms

The idea that .NET and Linux do not fit together is outdated.
Linux is a first-class platform for .NET these days. Since the
advent of modern .NET, starting with .NET Core 1.0 released in
2014, Microsoft officially considers Linux a supported target.
Unless your business logic uses Windows-specific .NET APIs,
you should be able to migrate that code to Linux with relatively
few changes.

Running the official Microsoft APl compatibility analyzer tool is
recommended (https://learn.microsoft.com/en-us/dotnet/core/

porting/github-copilot-app-modernization/overview) to give you

an overview of necessary changes.

Replacing Windows Forms

WinForms does not work on Linux. It is tightly coupled to Win-
dows’ windowing system and drawing APIs. Microsoft has not
ported it to Linux.

Instead, there are some options for Linux-compatible C# GUIs:
/ AvaloniaUl - a mature, open-source Ul framework that
supports Linux and Windows (in case you want to keep
running and testing your code on Windows). It uses AX-
AML, a XAMLderived language, for Ul definitions. The

https://www.kdab.com/mfc-to-qt-migration/
https://www.kdab.com/mfc-to-qt-migration/
https://slint.dev/
https://lvgl.io/
https://isocpp.org/files/papers/CppDevSurvey-2025-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2025-summary.pdf
https://learn.microsoft.com/en-us/dotnet/core/porting/github-copilot-app-modernization/overview
https://learn.microsoft.com/en-us/dotnet/core/porting/github-copilot-app-modernization/overview
https://www.avaloniaui.net/

KDAB | Trusted Software Excellence 10

Regardless of which option you choose,
KDAB and its partners can support your
migration to Linux.

Avalonia team recently announced a .NET MAUI Linux
backend with Avalonia as the underlying implementation
(https://avaloniaui.net/blog/net-maui-is-coming-to-linux-

and-the-browser-powered-by-avalonia). This may be use-

ful, if you have other divisions in your organization that
work with MAUI.

/Uno platform - another XAMLbased C# Ul framework
that supports Windows, Linux, and other platforms, with
commercial support options.

Regardless of the option you choose, KDAB and its partners can

”ChOOSing Mono support your migration to Linux.
would effectively What about Momo?
. at abou ono:
mean mOVIng Mono is an older implementation of .NET that ran on Linux long
from one ObSOIete before .NET Core was even planned.
technology to

another Only It has a WinForms implementation for Linux, which can make it
tempting to just patch the Mono incompatibilities in your appli-

slightly less
obsolete”

cation and avoid actual migration of the Ul.

This approach is not recommended. Mono no longer has com-
mercial support. Microsoft transferred it to the Wine project
(https://github.com/mono/mono/issues/21796) mostly to

provide a .NET compatibility layer for Windows application
emulation under Linux. For the purpose of running embedded
applications, it is effectively unmaintained.

Other problems you will face with Mono include:
/ Recent versions are not packaged for popular distributions
- you will need to compile it yourself to stay up to date
/ No native Wayland support
/ Performance price of the Windows compatibility layer

Choosing Mono would effectively mean moving from one obso-
lete technology to another only slightly less obsolete.

https://avaloniaui.net/blog/net-maui-is-coming-to-linux-and-the-browser-powered-by-avalonia
https://avaloniaui.net/blog/net-maui-is-coming-to-linux-and-the-browser-powered-by-avalonia
https://platform.uno/
https://github.com/mono/mono/issues/21796

KDAB | Trusted Software Excellence

11

Migrating the OS touchpoints

Any nontrivial embedded application interacts with hardware
like sensors and actuators, talks over the network, or read and
write from storage devices. All these interactions cross the ap-
plication/operating system boundary and this code will have to
change, because Linux behaves very differently from WinCE in
these areas.

In this section we will discuss the most common OS touchpoints
and how to assemble the operating system itself.

Assembling the Operating System
With WinCE you likely got a system image from your hardware
vendor, perhaps with custom drivers included.

On Linux there are more options. Your hardware vendor may still
provide a reference system image, but it will often need modifi-
cations or extensions to match your product’s requirements.

The full landscape of options to create such a system image is
too broad to be presented within the scope of this guide. Tech-
nologies you may encounter include:

/ Yocto - a meta-distribution that lets you build your own
system from the ground up. A popular choice for the base
Linux system.

/ Containerized Linux - your application runs in a sand-
boxed container with a more generic Linux underneath.
Torizon from Toradex is one example of this approach.

KDAB's whitepaper on Containerization on Embedded
Linux provides more detail.

System control with systemd

(startup, reboot, date and time)

Your application will not be the only one running with Linux.
The operating system runs numerous processes that control
aspects like time synchronization, network management, DNS
resolution and more.

These are orchestrated by a service manager: the first user-
space program that the Linux kernel starts after booting. It will
also start your application.

https://www.yoctoproject.org/
https://www.kdab.com/containers-in-embedded/
https://www.kdab.com/containers-in-embedded/

KDAB | Trusted Software Excellence

12

In recent years, the most popular choice for this role has been
systemd (https://systemd.io/). Apart from process management

it also provides a set of tools and daemons that run in the back-
ground and implement important OS functionality in a distribu-
tion-agnostic way.

You can talk to systemd over D-Bus (https://www.freedesktop.

org/wiki/Software/dbus/), a de-facto standard inter-process

communication technology. Most mainstream programming
languages provide DBus bindings. For C++ we recommend sd-
bus-cpp and for C# the Tmds.Dbus package.

The D-Bus interfaces implemented by systemd and adjacent
tools that are particularly relevant include:
/ login1 - for controlling user sessions, logins, rebooting
the system
/ timedate1 - for working with time and date settings, time
zones, and NTP configuration.
/' hostname1 - basic information about the machine: ker-
nel version, hostname info, firmware version for example

Hardware communication: CAN, gpio, 1?C
etc.

Common hardware interfaces such as CAN, GPIO, and I°C are all
well supported on Linux, but the way your application talks to
them will need to change. If your application is well-structured,
it should be a matter of providing a new implementation of an
interface and wiring up dependency injection.

C#
For modern C#, support for several of these interfaces is already
available in the language's standard library:

/ System.Device.I2c namespace: https://learn.micro-

soft.com/en-us/dotnet/api/system.device.i2c

/ System.Device.Gpio namespace: https://learn.micro-

soft.com/en-us/dotnet/api/system.device.gpio

For other interfaces, libraries developed by the community are
available, like the C# wrapper for SocketCAN.

C++
For popular protocols, there are usually Linux-compatible
libraries in C or C++, likely already packaged for your distro and

https://systemd.io/
https://www.freedesktop.org/wiki/Software/dbus/
https://www.freedesktop.org/wiki/Software/dbus/
https://github.com/Kistler-Group/sdbus-cpp
https://github.com/Kistler-Group/sdbus-cpp
https://github.com/tmds/Tmds.DBus
https://www.freedesktop.org/software/systemd/man/latest/org.freedesktop.login1.html
https://www.freedesktop.org/software/systemd/man/latest/org.freedesktop.timedate1.html
https://www.freedesktop.org/software/systemd/man/latest/org.freedesktop.hostname1.html
https://learn.microsoft.com/en-us/dotnet/api/system.device.i2c
https://learn.microsoft.com/en-us/dotnet/api/system.device.i2c
https://learn.microsoft.com/en-us/dotnet/api/system.device.gpio
https://learn.microsoft.com/en-us/dotnet/api/system.device.gpio
https://github.com/derek-will/SocketCANSharp

KDAB | Trusted Software Excellence

“There are
multiple projects
that expose high-
level networking
functionality on
top of the low-level
kernel interfaces”

13

supported by Yocto. For example:
/ 1*3C - libi2c: https://github.com/amaork/libi2c
/ gpio - libgpiod: https://git.kernel.org/pub/scm/libs/libgpi-
od/libgpiod.git/
/ CAN bus - SocketCAN: https://docs.kernel.org/network-

ing/can.html

Networking

If your device is connected to a network — and these days it
likely is — you will probably need to allow users to configure
connection settings, select WiFi network, provide a password,

or connect to a VPN.

On Linux, networking is configured very differently than on
Windows CE. First of all, there is no single, OS-provided way.
There are multiple projects that expose high-level networking
functionality on top of the low-level kernel interfaces. Most of
them can be controlled via DBus, using the same messaging
system mentioned above.

The most common networking packages include:
/ NetworkManager - probably the most popular choice.

From C and C++ you can talk to it through the libnm
library. In other languages, you talk to NetworkManager's
D-Bus endpoint through your language’s D-Bus bindings.
NetworkManager is very complete in its support of net-
working technologies. For certain usecases it can be too
heavy though.

/ systemd-networkd - one of the sub-tools of systemd.
Not as feature-complete as NetworkManager but lighter
in implementation and also uses D-Bus as an API.

/ Connman - an embedded-oriented networking manager.
It also exposes a D-Bus interface for programmatic control.

Storage (SD cards, USB sticks)

If your device uses dynamically attached storage like SD cards
and USB sticks you need a way to automatically mount them
to the device’s file system. A common solution for this is the
udisks daemon, which listens to kernel hardware events and
mounts detected devices.

You may also query information about storage devices handled
by udisks using its D-Bus API.

https://github.com/amaork/libi2c
https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/
https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/
https://docs.kernel.org/networking/can.html
https://docs.kernel.org/networking/can.html
https://www.networkmanager.dev/
https://networkmanager.dev/docs/libnm/latest/
https://man7.org/linux/man-pages/man8/systemd-networkd.8.html
https://git.kernel.org/pub/scm/network/connman/connman.git/
https://www.freedesktop.org/wiki/Software/udisks/
https://storaged.org/udisks/docs/ref-dbus.html

KDAB | Trusted Software Excellence 14

Remote access

Some devices need to be operated or monitored remotely. De-

pending on your situation and requirements, options include:
/ AvaloniaUl VNC backend - if you use Avalonia as your

Ul framework, the Headless VNC rendering backend is an
option.

/ Weston VNC and RDP backends - the Weston com-
positor, that you may use for window management, can

expose VNC or RDP servers.

Registry

There is no direct replacement for the Windows Registry.
Programs usually store their configuration in files on the file
system according to the “XDG Base Directory Specification”
(https://specifications.freedesktop.org/basedir/latest/). Com-
mon formats used for that are Ini, JSON, YAML and TOML.
Sometimes, lightweight databases like SQLite are used, if trans-

actionality is important.

Touchscreen calibration

If your device uses a restive touchscreen — still common in
industrial environments where users wear gloves —, you need
a way to calibrate it.

Windows CE provided a builtin calibration tool. On Linux, cali-
bration depends on your chosen windowing and input setup.
Common solutions:

/ Weston's weston-calibrator - if your Ul runs under
Weston compositor, it contains a tool called weston-cali-
brator that launches a simple fullscreen calibrator appli-
cation. Documentation is sparse, but it works reliably in
practice.

/ Tslib - a library that sits between the device’s input sys-
tem and your application. It also provides a calibration
application.

https://www.nuget.org/packages/Avalonia.Headless.Vnc/
https://wayland.pages.freedesktop.org/weston/toc/running-weston.html?highlight=vnc
https://specifications.freedesktop.org/basedir/latest/
https://github.com/libts/tslib

KDAB | Trusted Software Excellence

15

Key Insights
Migrating away from Windows CE is not just a simple technical
task but a major shift in how your project works. It will require

changes not only to your code but also its operating environ-

ment and tooling.

In summary, here are the key insights:

/

Do not wait. Start as soon as possible. Technical and reg-
ulatory pressure will only increase. It's better to migrate
when there’'s still time than to scramble just before Win-
dows CE sunset deadlines.

Prepare. Both technically and organizationally. Gather
knowledge and give your employees space to learn the
new tools. Invest in architecture improvements and test
coverage before the migration starts to reduce the risks.
Keep the good parts. Try to preserve your application’s
business logic, if possible.

Learn about the hardware and OS interactions your ap-
plication has and how can they be handled in Linux.

Do not migrate and refactor together. Do one after the
other, but never simultaneously. ®

Get in touch

With numerous migration projects under our belt, KDAB is your partner for modernizing your product. If

you have any questions or would like to discuss your migration project, we look forward to hearing from

you via info@kdab.com

About the KDAB Group

The KDAB Group is the world's leading software consul-
tancy for architecture, development and design of Qt,
C++ and OpenGL applications across desktop, embedded
and mobile platforms. KDAB is the biggest independent
contributor to Qt and is the world's first ISO 9001 certified
Qt consulting and development company. Our experts
build runtimes, mix native and web technologies, solve
hardware stack performance issues and porting problems
for hundreds of customers, many among the Fortune
500. KDAB's tools and extensive experience in creating,
debugging, profiling and porting complex applications
help developers worldwide to deliver successful projects.
KDAB's trainers, all full-time developers, provide market
leading, hands-on, training for Qt, OpenGL and modern
C++ in multiple languages.

www.kdab.com

© 2026 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All
other trademarks belong to their respective owners.

