

BogDan Vatra <bogdan@kdab.com>
KDAB, Qt on Android

BogDan Vatra <bogdan@kdab.com>
KDAB, Qt on Android

How many of you have an Android
device ?

BogDan Vatra <bogdan@kdab.com>
KDAB, Qt on Android

Well, you are in luck !

We are going to learn how to use Qt
and Qt Creator to target your Android

device !

BogDan Vatra <bogdan@kdab.com>
KDAB, Qt on Android

Step by step Qt on Android tutorial

Who am I ?

● I am Bogdan Daniel Vatra (AKA BogDan).
● C/C++ developer for over 14 years.
● Qt developer for over 11 years.
● Initial author of Qt port on Android.
● The author and the current leader of

Necessitas project (Qt4 port on Android).
● Active KDE (necessitas) and qt-project

contributor.
● Last but not least a KDABian !

Overview

➔ Qt status.
● Development setup for Android.
● Using Qt Creator for Android.
● Deployment options.

Qt Core
– 5.1 & 5.2

● missing system semaphores and shared memory.

– 5.3
● Shared memory is on my TODO list

Qt Essentials status

Qt Multimedia
– 5.1

● video and audio works
● missing camera support

– 5.2
● brings camera support

– 5.3
● ATM no other plans

Qt Essentials status

Qt Network
– 5.1

● missing SSL support

– 5.2
● brings SSL support

– 5.3
● ATM no other plans

Qt Essentials status

Qt Quick Controls
– 5.1

● missing android native style

– 5.2
● brings android native style

– 5.3
● ATM no other plans

Qt Essentials status

Qt SQL
– 5.1
– 5.2
– 5.3

● only sqlite is provided by Qt-Project SDK

Qt Essentials status

Qt WebKit & Qt WebKitWidgets
– 5.1
– 5.2

● missing

– 5.3
● we'll see, any volunteer(s) ?

Qt Essentials status

Qt Widgets
– 5.1

● missing android native style

– 5.2
● brings android native style

– 5.3
● ATM no other plans

Qt Essentials status

Qt GUI

Qt QML

Qt Quick

Qt Quick Layouts

Qt Test
– just work on all Qt versions

Qt Essentials status

Qt Android Extras
– 5.1

● missing

– 5.2
● additional functionality for development on Android

– QJNIEnvironment, access to the JNI Environment
– QJNIObject, C++ wrapper around a Java class

– 5.3
● android services/binder support is on my TODO list

Qt Add-Ons status

Qt Bluetooth
– 5.1

● missing

– 5.2
● missing

– 5.3
● on my TODO list

Qt Add-Ons status

Qt NFC
– 5.1

● missing

– 5.2
● missing

– 5.3
● on my TODO list

Qt Add-Ons status

Qt Positioning
– 5.1

● missing

– 5.2
● missing

– 5.3
● on my TODO list

Qt Add-Ons status

Qt D-Bus
– 5.1
– 5.2
– 5.3

● missing, android uses the binder IPC.

Qt Add-Ons status

Qt Sensors
– 5.1

● commonly used sensors

– 5.2
● more sensors added

– 5.3
● ATM no other plans

Qt Add-Ons status

Qt PrintSupport
– 5.1
– 5.2
– 5.3

● missing, no native print support on Android

Qt Add-Ons status

Qt OpenGL
– 5.1
– 5.2

● limited to one top level widget
● can't mix QGLWidget with other QWidget

– 5.3
● there is hope to use one more top level widget
● can mix QGLWidget with other QWidgets

Qt Add-Ons status

Qt SerialPort
– 5.1
– 5.2

● missing

– 5.3
● any volunteer(s) ?

Qt Add-Ons status

Qt Concurrent

Qt Declarative

Qt GraphicalEffects

Qt ImageFormats

Qt Script

Qt ScriptTools

Qt SVG

Qt XML

Qt XMLPatterns
– just work on all Qt versions

Qt Add-Ons status

Overview

✔ Qt status.
➔ Development setup for Android.
● Using Qt Creator for Android.
● Deployment options.

Supported platforms:
● GNU/Linux
● Windows
● Mac

For a painless experience I do recommend GNU/Linux. For the
rest of the presentation I'll refer only to GNU/Linux.

Setting up the development
environment for Android

 Install ant and (open) JDK 6 (JDK 7 has a known issue
when signing the package which is fixed in Qt Creator 3.0).

On debian based systems you can use the following command:
 apt-get install ant openjdk-6-jdk

Setting up the development
environment for Android

Download QtProject's SDK from
http://qt-project.org/download

Setting up the development
environment for Android

http://qt-project.org/download

Download Android SDK (ver. 22+) from
http://developer.android.com/sdk/index.html

You need to download ONLY the SDK not ADT Bundle or Android Studio !
●

Setting up the development
environment for Android

http://developer.android.com/sdk/index.html

Download Android NDK (ver. r9+) from
http://developer.android.com/tools/sdk/ndk/index.html

Setting up the development
environment for Android

http://developer.android.com/tools/sdk/ndk/index.html

Extract the NDK&SDK and run android-sdk/tools/android tool and
install SDK Tools, SDK Build-tools and Android API-10 SDK
Platform. If you are planning to build Qt yourself you'll need to install
also API-11.

Setting up the development
environment for Android

Enable USB Debugging on your device.
On GNU/Linux you have to set the USB permissions for your device.

Android provides a detailed page on this matter.
Please check:
http://developer.android.com/tools/device.html

run
android-sdk/platform-tools/adb devices
to see if you enabled the USB debuging and set the permissions correctly.

Setting up the development
environment for Android

http://developer.android.com/tools/device.html

Setting up the development
environment for Android

● Setting up Qt Creator for Android
– Go to Tools->Option->Android settings page

● Set Android SDK location
● Set Android NDK location
● Make sure Automatically creates kits for Android tool chains is

checked.
● Set Ant locaion
● Set JDK location
● Click Apply button !

● If you don’t see the Android page, it means that the plugin is disabled and you
must first enable it (Help->About plugins)

Setting up the development
environment for Android

Setting up the development
environment for Android

● Setting up Qt Creator for Android
– check if Qt Creator created the Android kits

Setting up the development
environment for Android

● Setting up Qt Creator for Android
– Uncheck Warn when debugging "Release" builds

Overview

✔ Qt status.
✔ Development setup for Android.
➔ Using Qt Creator for Android.
● Deployment options.

Using Qt Creator for
Android

This part will cover only the Qt Creator Android specific part not the whole Qt Creator.

● Open/Create a project
● Choose an Android KIT

Using Qt Creator for
Android

● Select an Android KIT

Using Qt Creator for
Android

After the previous step, Qt Creator will create and add a few files to android folder.
Most of these files are specific to your project and you should add them to your project
SCM.

● The following files are needed to build an android application
– AndroidManifest.xml

– version.xml

– res/*

– src/*

● Autogenerated file, should not be added to your project SCM.
– build.xml
– local.properties
– proguard-project.txt

– project.properties

– assets/*

– bin/*

– gen/*

– libs/*

Using Qt Creator for
Android

Warning: assets and libs folders are not cleaned automatically,
so if you are are removing libs/resources, make sure you are

removing these folders before you build the final android package.

● Setting up the AndroidManifest.xml
– Package name, reversed URL (e.g. com.kdab.application)
– Version code, this field is used by Google Play to upgrade

your existing applications
– Version name, is the version displayed in Android settings
– Application name, is the name displayed in Android

launcher
– Run, this is the application that java part will run
– Permissions. Here you must add all permissions that your

application needs to access (e.g. internet, sd card,
sensors, etc.).

Using Qt Creator for
Android

● Setting up the AndroidManifest.xml

Using Qt Creator for
Android

● Setting up the AndroidManifest.xml
– Qt Creator 3.0 allows you to choose Minimum and

Target SDK

Using Qt Creator for
Android

Using Qt Creator for
Android

● Setting up the AndroidManifest.xml
– Android manifest is quite complicated sometime you

need to edit manually

Using Qt Creator for
Android

● Setting up the AndroidManifest.xml
– For more informations about Android Manifest, please

check

 http://developer.android.com/guide/topics/manifest/manifest-intro.html

http://developer.android.com/guide/topics/manifest/manifest-intro.html

Using Qt Creator for
Android

● Package configuration

Using Qt Creator for
Android

● Signing the application.
– create a certificate

Using Qt Creator for
Android

● Signing the application.
– switch to release mode
– open keystore and check “sign package”

Using Qt Creator for
Android

● Signing the application
– If you want to target more than one platform with the

same package, then you must build and run in release
mode the application for every platform and then sign it !

– When Qt Creator opens the location of the signed package,
there you will have a few .apk files. Only the one with
"-signed" in the name is the one which is signed and
ready for publishing.

Overview

✔ Qt status.
✔ Development setup for Android.
✔ Using Qt Creator for Android.
➔ Deployment options.

Choosing the right
deploying system

Qt Creator supports three deploying systems.
– Use Ministro service to install Qt.
– Deploy local Qt libraries to temporary directory.
– Bundle Qt libraries into the APK.

Choosing the right
deploying system

● Deploy local Qt libraries to temporary directory.
– This deploy system is used mostly by Qt hackers when hacking

on Qt itself.

Choosing the right
deploying system

● Bundle Qt libraries into the APK.
– This feature was added recently to Qt Creator. Beside your application

and your resources Qt Creator adds all Qt libraries your application
needs to run.

– Pro
● The APK contains everything it needs to run.

– Con
● The APK is HUGE due to Qt libs which are pretty big (+40Mb/platform).
● All Qt libs must be unpacked! So your application will need a lot of free space

to run (+50Mb)
● Most of the low-end devices users can't afford to spend that much free space.
● Due to big size you can't target more than one platform/apk. You must create

an apk for every platform (armv5, armv7, x86).
● No VFP on armv5 devices or NEON on armv7 devices.
● Qt not shared with other Qt apps.
● No separate libs update.

Choosing the right
deploying system

● Use Ministro service to install Qt.
– Why Ministro was invented?

● In 2009/2010 most devices have limited free space
(<100 Mb).

● Google Market had a lower package size limit than
today's 50Mb limit/apk.

Choosing the right
deploying system

● Use Ministro service to install Qt.
– How it works

● your package will contain ONLY your application’s
.so file(s), its resources.

● application starts and connect to Ministro service
– opens Android play for the user to install Ministro

● sends to Ministro the dependencies list
– downloads missing files

● Ministro sends back another list with everything the
application needs to load.

● The Application loads everything and starts the Qt
application.

Choosing the right
deploying system

● Use Ministro service to install Qt.
– Pro

● Using Ministro, the user needs to download *ONLY* once the
Qt libs.

● Ministro can detect VFP on amv5 and NEON on armv7
download respective libs.

● Ministro can update Qt libs, without requiring app update.
● You can easily target all Android platforms with a single APK.
● You can use your own Ministro sources with your own

libraries.

– Con
● Not very user friendly?
● Ministro upgrades Qt libraries and it might break things?

Choosing the right
deploying system

● Use Ministro service to install Qt.
– Ministro uses a Debian like release scheme with

three different repositories
● unstable
● testing
● stable

Choosing the right
deploying system

● Use Ministro service to install Qt.
– Every major Qt release will use a different

location for Ministro.
● http://download.qt-project.org/ministro/android/qt5/qt-5.1/
● http://download.qt-project.org/ministro/android/qt5/qt-5.2/

http://download.qt-project.org/ministro/android/qt5/qt-5.1/
http://download.qt-project.org/ministro/android/qt5/qt-5.2/

That's all folks!

Thank you for your time !

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

