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How many of you have an Android 
device ?
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Well, you are in luck !

We are going to learn how to use Qt 
and Qt Creator to target your Android 

device !
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Step by step Qt on Android tutorial



  

Who am I ?

● I am Bogdan Daniel Vatra (AKA BogDan).
● C/C++ developer for over 14 years.
● Qt developer for over 11 years.
● Initial author of Qt port on Android.
● The author and the current leader of 

Necessitas project (Qt4 port on Android).
● Active KDE (necessitas) and qt-project 

contributor.
● Last but not least a KDABian !



  

Overview

➔ Qt status.
● Development setup for Android.
● Using Qt Creator for Android.
● Deployment options.



  

Qt Core
– 5.1 & 5.2

● missing system semaphores and shared memory.

– 5.3
● Shared memory is on my TODO list

Qt Essentials status



  

Qt Multimedia
– 5.1

● video and audio works
● missing camera support

– 5.2
● brings camera support

– 5.3
● ATM no other plans

Qt Essentials status



  

Qt Network
– 5.1

● missing SSL support

– 5.2
● brings SSL support

– 5.3
● ATM no other plans

Qt Essentials status



  

Qt Quick Controls
– 5.1

● missing android native style

– 5.2
● brings android native style

– 5.3
● ATM no other plans

Qt Essentials status



  

Qt SQL
– 5.1
– 5.2
– 5.3

● only sqlite is provided by Qt-Project SDK

Qt Essentials status



  

Qt WebKit & Qt WebKitWidgets
– 5.1
– 5.2

● missing

– 5.3
● we'll see, any volunteer(s) ?

Qt Essentials status



  

Qt Widgets
– 5.1

● missing android native style

– 5.2
● brings android native style

– 5.3
● ATM no other plans

Qt Essentials status



  

Qt GUI

Qt QML

Qt Quick

Qt Quick Layouts

Qt Test
– just work on all Qt versions

Qt Essentials status



  

Qt Android Extras
– 5.1

● missing

– 5.2
● additional functionality for development on Android

– QJNIEnvironment, access to the JNI Environment
– QJNIObject, C++ wrapper around a Java class

– 5.3
● android services/binder support is on my TODO list

Qt Add-Ons status



  

Qt Bluetooth
– 5.1

● missing

– 5.2
● missing

– 5.3
● on my TODO list

Qt Add-Ons status



  

Qt NFC
– 5.1

● missing

– 5.2
● missing

– 5.3
● on my TODO list

Qt Add-Ons status



  

Qt Positioning
– 5.1

● missing

– 5.2
● missing

– 5.3
● on my TODO list

Qt Add-Ons status



  

Qt D-Bus
– 5.1
– 5.2
– 5.3

● missing, android uses the binder IPC.

Qt Add-Ons status



  

Qt Sensors
– 5.1

● commonly used sensors

– 5.2
● more sensors added

– 5.3
● ATM no other plans

Qt Add-Ons status



  

Qt PrintSupport
– 5.1
– 5.2
– 5.3

● missing, no native print support on Android

Qt Add-Ons status



  

Qt OpenGL
– 5.1
– 5.2

● limited to one top level widget
● can't mix QGLWidget with other QWidget

– 5.3
● there is hope to use one more top level widget
● can mix QGLWidget with other QWidgets

Qt Add-Ons status



  

Qt SerialPort
– 5.1
– 5.2

● missing

– 5.3
● any volunteer(s) ? 

Qt Add-Ons status



  

Qt Concurrent

Qt Declarative

Qt GraphicalEffects

Qt ImageFormats

Qt Script

Qt ScriptTools

Qt SVG

Qt XML

Qt XMLPatterns
– just work on all Qt versions

Qt Add-Ons status
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Supported platforms:
●  GNU/Linux
●  Windows
●  Mac

For a painless experience I do recommend GNU/Linux. For the 
rest of the presentation I'll refer only to GNU/Linux.

Setting up the development 
environment for Android



  

 Install ant and (open) JDK 6 (JDK 7 has a known issue 
when signing the package which is fixed in Qt Creator 3.0).

 

On debian based systems you can use the following command: 
    apt-get install ant openjdk-6-jdk

Setting up the development 
environment for Android



  

Download QtProject's SDK from
http://qt-project.org/download

Setting up the development 
environment for Android

http://qt-project.org/download


  

Download Android SDK (ver. 22+) from
http://developer.android.com/sdk/index.html

You need to download ONLY the SDK not ADT Bundle or Android Studio ! 
●

Setting up the development 
environment for Android

http://developer.android.com/sdk/index.html


  

Download Android NDK (ver. r9+) from
http://developer.android.com/tools/sdk/ndk/index.html

Setting up the development 
environment for Android

http://developer.android.com/tools/sdk/ndk/index.html


  

Extract the NDK&SDK and run android-sdk/tools/android tool and 
install SDK Tools, SDK Build-tools and Android API-10 SDK 
Platform. If you are planning to build Qt yourself you'll need to install 
also API-11.

Setting up the development 
environment for Android



  

Enable USB Debugging on your device.
On GNU/Linux you have to set the USB permissions for your device.

Android provides a detailed page on this matter.
Please check:
http://developer.android.com/tools/device.html

run 
android-sdk/platform-tools/adb devices
to see if you enabled the USB debuging and set the permissions correctly.

Setting up the development 
environment for Android

http://developer.android.com/tools/device.html


  

Setting up the development 
environment for Android

● Setting up Qt Creator for Android
– Go to Tools->Option->Android settings page

● Set Android SDK location
● Set Android NDK location
● Make sure Automatically creates kits for Android tool chains is 

checked.
● Set Ant locaion
● Set JDK location
● Click Apply button !

●  If you don’t see the Android page, it means that the plugin is disabled and you 
must first enable it (Help->About plugins) 



  

Setting up the development 
environment for Android



  

Setting up the development 
environment for Android

● Setting up Qt Creator for Android
– check if Qt Creator created the Android kits 



  

Setting up the development 
environment for Android

● Setting up Qt Creator for Android
– Uncheck Warn when debugging "Release" builds 
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Using Qt Creator for 
Android

This part will cover only the Qt Creator Android specific part not the whole Qt Creator.

● Open/Create a project
● Choose an Android KIT 



  

Using Qt Creator for 
Android

● Select an Android KIT 



  

Using Qt Creator for 
Android

After the previous step, Qt Creator will create and add a few files to android folder. 
Most of these files are specific to your project and you should add them to your project 
SCM.

● The following files are needed to build an android application
– AndroidManifest.xml

– version.xml

– res/*

– src/*

● Autogenerated file, should not be added to your project SCM.
– build.xml
– local.properties
– proguard-project.txt

– project.properties

– assets/*

– bin/*

– gen/*

– libs/*



  

Using Qt Creator for 
Android

Warning: assets and libs folders are not cleaned automatically, 
so if you are are removing libs/resources, make sure you are 

removing these folders before you build the final android package.



  

●  Setting up the AndroidManifest.xml
– Package name, reversed URL (e.g. com.kdab.application)
– Version code, this field is used by Google Play to upgrade 

your existing applications
– Version name, is the version displayed in Android settings
– Application name, is the name displayed in Android 

launcher
– Run, this is the application that java part will run
– Permissions. Here you must add all permissions that your 

application needs to access (e.g. internet, sd card, 
sensors, etc.).

Using Qt Creator for 
Android



  

●  Setting up the AndroidManifest.xml

Using Qt Creator for 
Android



  

●  Setting up the AndroidManifest.xml
– Qt Creator 3.0 allows you to choose Minimum and 

Target SDK 

Using Qt Creator for 
Android



  

Using Qt Creator for 
Android

●  Setting up the AndroidManifest.xml
– Android manifest is quite complicated sometime you 

need to edit manually



  

Using Qt Creator for 
Android

●  Setting up the AndroidManifest.xml
– For more informations about Android Manifest, please 

check

 http://developer.android.com/guide/topics/manifest/manifest-intro.html

http://developer.android.com/guide/topics/manifest/manifest-intro.html


  

Using Qt Creator for 
Android

●   Package configuration



  

Using Qt Creator for 
Android

● Signing the application.
– create a certificate



  

Using Qt Creator for 
Android

● Signing the application.
– switch to release mode
– open keystore and check “sign package”



  

Using Qt Creator for 
Android

● Signing the application
– If you want to target more than one platform with the 

same package, then you must build and run in release 
mode the application for every platform and then sign it !

– When Qt Creator opens the location of the signed package, 
there you will have a few .apk files. Only the one with 
"-signed" in the name is the one which is signed and 
ready for publishing.
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Choosing the right 
deploying system

Qt Creator supports three deploying systems.
– Use Ministro service to install Qt.
– Deploy local Qt libraries to temporary directory.
– Bundle Qt libraries into the APK. 



  

Choosing the right 
deploying system

● Deploy local Qt libraries to temporary directory.
– This deploy system is used mostly by Qt hackers when hacking 

on Qt itself.



  

Choosing the right 
deploying system

● Bundle Qt libraries into the APK. 
– This feature was added recently to Qt Creator. Beside your application 

and your resources Qt Creator adds all Qt libraries your application 
needs to run.

– Pro
● The APK contains everything it needs to run.

– Con
● The APK is HUGE due to Qt libs which are pretty big (+40Mb/platform).
●  All Qt libs must be unpacked! So your application will need a lot of free space 

to run (+50Mb)
● Most of the low-end devices users can't afford to spend that much free space.
● Due to big size you can't target more than one platform/apk. You must create 

an apk for every platform (armv5, armv7, x86).
● No VFP on armv5 devices or NEON on armv7 devices.
● Qt not shared with other Qt apps.
● No separate libs update.



  

Choosing the right 
deploying system

● Use Ministro service to install Qt.
– Why Ministro was invented?

● In 2009/2010 most devices have limited free space 
(<100 Mb).

● Google Market had a lower package size limit than 
today's 50Mb limit/apk.



  

Choosing the right 
deploying system

● Use Ministro service to install Qt.
– How it works

● your package will contain ONLY your application’s 
.so file(s), its resources.

● application starts and connect to Ministro service
– opens Android play for the user to install Ministro

● sends to Ministro the dependencies list
– downloads missing files

● Ministro sends back another list with everything the 
application needs to load.

● The Application loads everything and starts the Qt 
application.



  

Choosing the right 
deploying system

● Use Ministro service to install Qt.
– Pro

● Using Ministro, the user needs to download *ONLY* once the 
Qt libs. 

● Ministro can detect VFP on amv5 and NEON on armv7 
download respective libs.

● Ministro can update Qt libs, without requiring app update.
● You can easily target all Android platforms with a single APK.
● You can use your own Ministro sources with your own 

libraries.

– Con
● Not very user friendly?
● Ministro upgrades Qt libraries and it might break things? 



  

Choosing the right 
deploying system

● Use Ministro service to install Qt.
– Ministro uses a Debian like release scheme with 

three different repositories
● unstable
● testing
● stable



  

Choosing the right 
deploying system

● Use Ministro service to install Qt.
– Every major Qt release will use a different 

location for Ministro.
● http://download.qt-project.org/ministro/android/qt5/qt-5.1/
● http://download.qt-project.org/ministro/android/qt5/qt-5.2/

http://download.qt-project.org/ministro/android/qt5/qt-5.1/
http://download.qt-project.org/ministro/android/qt5/qt-5.2/


  

That's all folks!

Thank you for your time !

Any questions?
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