
The word “migration” makes most of us think about birds leaving a cold, bar-
ren landscape and flying on a long, arduous journey to a warm, more fertile
location. Software migration takes a metaphorical journey not unlike this –
it’s a lengthy process that sees hundreds of modules move from an obso-
lete framework to a much more preferable one. However, migration isn’t
instinctive for humans like it is for geese. There are a number of pitfalls in a
large porting effort that can significantly increase time, cost, and complexity,
leading to risk of project derailment.

Regardless of whether your current system was built using MFC, Motif,
Photon, Delphi, or Tcl/Tk, moving the user interface portion can be one of
your most difficult tasks. You may have languages, frameworks, and window-
ing systems that are no longer supported or that leave you unable to find
knowledgeable talent. What’s more, legacy UIs tend to look very dated com-
pared to today’s fluid animations, context-sensitive controls, and responsive
interactions, requiring more than just a simple port to bring them up to
date.

Modernizing Legacy Systems

KDAB | the Qt, OpenGL and C++ experts

Your 10 Step Guide to Software Migration

Matthias Kalle Dalheimer

A KDAB WHITEPAPER

This whitepaper is a detailed guide to help
you effectively evaluate whether a migration
makes sense for your current system, and to
help you outline and execute your own.

KDAB | the Qt, OpenGL and C++ experts

At KDAB, we’ve fine-tuned the migration process over 15 years, successfully
migrating software from a wide variety of frameworks – with the majority
migrating to Qt. Based on our experience, we know that regardless of the
framework, operating system, or language, all migrations share common
steps that ensure success and have common pitfalls that derail the best of
efforts. This whitepaper distills our expertise in a short but detailed guide
to help you effectively evaluate whether a migration makes sense for your
current system, and to help you outline and execute your own.

Identifying the tipping point
If your organization is responsible for a large legacy project, you know the
pain of accumulated technical debt. Perhaps this shows itself as an inabil-
ity to change hardware platforms, make a timely response to bug fixes, or
improve a dated user interface. You may have been limping along in main-
tenance mode for a while – how do you know when you definitively need to
make a change?

A sign that your software’s current incarnation may soon pass the point
of diminishing returns is when a majority of scheduled work is no longer
spent on bug fixes or preventative maintenance but rather on adapting to
new platforms or adding new requirements. As the system continues to be
modified for purposes it was never originally designed, successive chang-
es become more prone to introducing new issues, resulting in a continual
expansion in engineering estimates. The underlying software becomes
brittle, which shows up in several ways – new bugs after every added fea-
ture, increasing time to make simple fixes, or even reluctance by engineers
to make changes. Tracking the volume and type of maintenance requests,
timing estimates, and actual work length can help identify when the situation
has gone from a mere nuisance to an engineering sinkhole.

It’s important to remember that all software eventually becomes obsolete
and it’s only natural to forestall its replacement as long as possible. Unfor-
tunately, the longer you wait, the more difficult it becomes. And without an
immediate ROI or visible improvement, it’s often very difficult to convince
organizational stakeholders to invest in a migration effort. Tracking and
reviewing metrics can help justify the cost of undergoing a software modern-
ization effort.

All software
eventually

becomes
obsolete and

it’s only
natural to

forestall its
replacement

It’s very tempting to completely rewrite
your legacy software to use modern
techniques and revisit requirements –
but there’s a clear downside.

KDAB | the Qt, OpenGL and C++ experts

Paths for handling legacy software
Let’s say you’ve identified that your aging software system is becoming too
costly to maintain. Are you still actively selling it or just maintaining it for a
handful of core customers? Are you under contractual obligations to main-
tain or extend it? Does it contain specially developed assets or complex
algorithms that would be very costly to lose? How long can you afford to be
without a new release or without new features?

After answering these questions, you’ll be better prepared to choose among
the options available.

A. Limp along
Although it’s only feasible for some markets, customers, and competitors, re-
maining in a holding pattern may be an alternative that can keep costs to a
minimum. Continue stringing on the old software as long as you can: incen-
tivize employees who still know how it works to stay onboard, avoid adding
new features whenever possible, and fix bugs only when absolutely neces-
sary. The downside to this approach is that you keep accumulating technical
debt, as well as becoming more vulnerable to employee turnover, changing
technologies, and cybersecurity vulnerabilities.

B. Abandon
If it’s not economical to maintain the old code base any more, you may be
better off spending your resources on something else. Performing an end-
of-life for a product may alienate some long-standing customers but it could
be a trade-off that is the lesser of two evils. You may also want to consider
replacement strategies for stranded customers – whether the replacements
are in your product portfolio or outside it.

C. Rewrite
If there are enough issues with your legacy software, it can be very tempting
to re-design and re-code everything from scratch, using modern devel-
opment environments, modern libraries, modern coding techniques, and
modern UI paradigms. Certainly this option is the most appealing from a de-
veloper’s standpoint – a greenfield development will create a product that’s
not bound by technical decisions made decades ago. From the business
side too, you get the chance to revisit requirements or limitations that don’t
fit with today’s marketplace, so there is a clear upside for this choice.

Writing code is less work than testing and
debugging it but the testing effort can be
many times more expensive than the initial
development.

KDAB | the Qt, OpenGL and C++ experts

Unfortunately there is a clear downside, too. Of all options, this leaves you
without a working, sellable product for the longest time period. If your cus-
tomers cannot easily consider other options, they might be able to wait for
two years until the next release.

You can also consider renewing your software while you string along the old
software at the same time. This will keep you on a regular release cadence
at the cost of duplicating engineering effort and significantly increasing cost.
This can often result in a highly motivated A-team working on new software
while a B-team maintains the legacy system. Unfortunately, the latter is
drudgery work that can be rather demoralizing, so your B-team may eventu-
ally leave – perhaps finding jobs in similar areas at competitive companies.

There is another less-obvious risk with a rewrite strategy. Your software is
likely to contain modules that embody your domain knowledge with tricky
areas that were hard to write and get right. Examples of this are complex
algorithms, sophisticated data storage, import and export of external data
formats, network protocols, and many more. Of course writing code is less
work than testing and debugging it, and the testing effort can be many times
more expensive than the initial development. Brand-new code very fre-
quently lives through the same mistakes that were made when the original
code was written 20 years ago, which can make your customers adopting
the new suite feel like beta testers for buggy pre-release quality software.

D. Surgery
The last option is to be selective: keep the good and throw out the bad. Here
you perform a careful surgery that keeps your most expensive or specially
developed assets and focuses on replacing the out-dated codebase. To limit
the scope and prevent the modernization effort from becoming a rewrite,
you want to carefully select the smallest bits of code that are the most crit-
ical to replace. Usually the most out-dated portion is the user interface but
this is also the time to identify any other areas that generate more than their
fair share of trouble tickets, customer complaints, or engineer wrath.
This strategy often works surprisingly well because the parts of your soft-
ware that have stood the test of time – pieces that are still valid and useful –
will often continue to hold up even in future versions with little or no chang-
es. An example of this is a complex algorithm – once you’ve gotten it right
once, you may not need to rework it at all. If you can manage to separate

The best way to handle your legacy software
should be based on your goals, your team’s
collective expertise, your engineering load,
your competitors, and your customers.

KDAB | the Qt, OpenGL and C++ experts

out these bedrock modules first, you can end up with less work, less cost,
and a quicker time-to-market. Even if your software wasn’t designed with
perfect modularity that isolates the solid parts you wish to keep, it’s often
worth it to extract those core bits and rewrap them with a new interface or
API to preserve their embodied knowledge.

The downside of a surgical approach is that you tend to need a higher than
average skillset in your team – they need to understand both the old and
the new. It might also be less appealing to your team to start by refactoring
your software into what will be preserved and what will be removed. After
all, the key skills of your team are not in forklifting ancient code with archaic
libraries into a new toolkit but in your domain – industrial automation, oil
and gas exploration, medical imaging, etc.

Making a migration
Your assessment of the best way to handle your legacy software is based
on your goals, your team’s collective expertise, your engineering load, your
competitors, and your customers. At KDAB, we’ve seen all four of the possi-
ble options exercised by our customers at one point or another. However,
we’ve discovered that the surgical approach (option D) is the most oft-se-
lected path. Because it’s not an all-or-nothing solution like some of the oth-
er choices, this approach allows a careful balancing of the risks, impact, and
benefits. Option D is the heart of a migration effort and so the remainder of
this whitepaper will assume that’s the path you’ve chosen for your project.

What is migrating?
A code migration does not need to include a graphical UI and it need not re-
quire moving away from a defunct framework. As an example, we’ve worked
with companies who wanted to move from Java to C++/Qt for performance
and maintenance reasons. Although this guide is applicable to any type of
large software project migration, we find C++ with Qt to be the predominant
destination toolset in most of our migrations. And because the GUI tends to
be the portion of the software that’s most desperately in need of a refresh –
many of our examples will focus on GUI changes.

A surgical
approach to
migration is

the most
oft-selected

path as it
carefully

balances risks
and benefits

We’ve examined many of our migration
projects to analyze what factors make the
most difference in migration efficiency.
Here’s what we’ve discovered.

KDAB | the Qt, OpenGL and C++ experts

Step 1) Develop an estimate
It’s not easy to develop an estimate for any significant program but you’ll
need one to understand the scope of your migration project and to track
progress against it. Migration estimates have a large plus compared to
estimates on developing an application from scratch. That’s because with a
migration you already have the perfect “specification” at hand – the existing
legacy application. Not only do you have a running model of the finished
product, you have the complete source code repository, running your “pro-
totype” user interface, user and training manuals, and any other assorted
documentation that will help you understand the full scope of the project.

Step 2) Assess your skills
To turn your workload estimate into a schedule, you need to determine how
much engineering firepower your team possesses. In other words, how long
does it take them to complete a feature, including writing it, debugging it,
documenting it, and writing unit tests for it. The logs of your source code
repository can help you develop metrics for your team. You could also ask
key employees to migrate smaller parts of your application. While doing
these “prototype” ports, measure the time taken with ample notes of what
was required. This will come in handy not only in developing an estimate for
the migration but detailed notes may be useful for the entire team when
planning the actual work.

A very common question we often encounter from clients is whether or
not their engineering team has the skill to perform a successful migration.
In general, for most teams the answer is yes – as long as your team has suffi-
cient skills in the destination environment. Perhaps a better question is how
efficient will your team be. We’ve examined many of our migration projects
to analyze what factors make the most difference in migration efficiency.
What we discovered was that there are three large categories of skills that
matter for migration efficiency, in increasing order of importance:

A. Knowing your source framework
This means if (for example) you are migrating from MFC to Qt, you know
MFC. If you can immediately say what each bit of code is doing without hav-
ing to look it all up in a reference manual, you are going to be faster. How-
ever, knowledge of the source framework seems to matter least. No matter
how well designed, code in large-scale applications tends to be repetitive. It’s
easier to read code than write it, and once you’ve looked up what a certain

We’ve seen clients overlook changes that
were trivial to engineering staff – yet
fundamental to customers – leaving them
mired in customer-relations issues.

KDAB | the Qt, OpenGL and C++ experts

method invocation does, you’ll be able to recognize that particular pattern
when you see it again as well as what construct you migrated it to. And even
if you can’t precisely remember, you’ve got the previously migrated snippet
for reference. If you are doing well, you’ll also have added support for your
editor configuration to help with similar transformations in the future (see
automation step).

B. Knowing your target framework
In our example MFC to Qt port, this means you know the target framework,
Qt. Understandably, this is a skill you cannot do without. If you don’t know
the target framework, you will not be able to produce good quality code and
you may not be able to recreate all of your system’s original functionality.
Better skills means better productivity so the more of the target framework
you know, the faster you are going to migrate. And yet, we found that even
this skill was not the most critical.

C. Knowing migration techniques
This turned out to be the biggest factor in achieving great productivity when
performing a migration. In fact, it turned out to be a lot more important than
knowing the target framework. Also, the productivity difference between
somebody who had a lot of migration experience and somebody who did
not was greater than the productivity difference between somebody who
knew Qt well and somebody who did not.

Step 3) Note deliberate omissions
Before you start actual work on a migration, your team needs to come to an
understanding about what you’re trying to achieve. If one goal is to make an
application that feels like a native app on the new target platform, it’s better
to identify any possible pitfalls early. For example, if your customers are
used to old UI paradigms on the source platform that work differently on
the new platform – like a scrollbar on Motif that changes to a slider on OSX
– you’ll find that cross-platform portability comes with some trade-offs. How-
ever, if you recognize ahead of time what won’t be identical between your
original application and the migrated version, you can mindfully determine
the right course of action: ignore the minor differences, develop specialized
controls, or update user manuals and training materials.

The biggest factor in a
productive migration is how
well your developers know
migration techniques

We verify code division decisions by trying to
compile and link the code on what we call a
hostile platform – one that does not support
the old framework or library.

KDAB | the Qt, OpenGL and C++ experts

It may seem obvious that changing platforms will inherently change an
interface. However, we’ve seen clients overlook changes that were trivial to
their engineering staff – yet fundamental to customers – leaving them mired
in customer-relations issues after a migration release. A quick survey of the
user interface and some amount of customer involvement beforehand can
avoid this issue.

Step 4) Identify the divisions
The next step in your migration is to determine what code should be pre-
served and what should be replaced. Your team will likely know which parts
depend on the old libraries or frameworks that you’re trying to excise, and
which parts are solely algorithmic using standard C or C++. But it’s always a
good idea to let a computer verify your assumptions.

At KDAB, we verify code division decisions by trying to compile and link the
code on what we call a hostile platform – one that does not support the
framework or library that you want to discard. For example, if the codebase
is using MFC, we will try to build it on a Unix or OSX system; if it is using Mo-
tif, we will try to build it on Windows. How far removed the hostile platform
should be will depend on your intentions. If you’re using the migration to
help extend your software to support multiple platforms, you should prob-
ably select a hostile platform that’s as far away from the original as possible.
Otherwise, uninstalling the framework (or hiding it from the build) may be
sufficient.

Of course a build on a hostile platform will fail but the goal is to determine
two things: how significantly does it fail and where does it fail. With any luck
– or with a good dose of engineering foresight – there may be a few files that
are platform-agnostic enough to compile successfully although there is likely
not going to be a whole lot of them. Others will just have a few simple prob-
lems like different include files, standard library functions that have been
moved into a different namespace, or the odd string handling function that
has different names on Unix and Windows.

And then there will be the code files that just crash and burn loudly. Careful-
ly examine the compiler errors and rate each file and module. Do not make
any changes just yet, even if they seem trivial – like changing the name of an
include file – otherwise you risk getting confused about your changes. If you
want to confirm that a quick edit would fix an issue, test small changes but
revert them once you see the results.

There will
be code files

that crash
and burn

loudly. But
don’t make
changes or

you risk
getting

confused

Many years of software industry experience
have shown that so-called big-bang
integrations are risky and likely to fail
altogether.

KDAB | the Qt, OpenGL and C++ experts

Part of this analysis will also use text-searching tools to identify modules and
files using the old framework by searching for characteristic substrings. For
example, if you are migrating away from MFC, search for class names start-
ing with a capital ‘C’, followed by another capital letter like CString, CDialog,
CButton, etc. If you are migrating away from Motif, search for strings starting
with ‘Xm’, or ‘Xt’, or ‘X’ followed by another capital letter. Recognize that iden-
tifying old framework dependencies by grepping isn’t going to be perfect.
You may have many false positives – for example, there could be other class
names other than MFC ones that start with a capital ‘C’. Or you may have
subclasses that wrap your old toolkit classes, hiding a strong legacy de-
pendency scattered throughout the code. In the end, it’s your compiler that
decides whether your code compiles, not your text-searching tool.

At the end of this step you will have a much better idea of which parts
in your code will need a lot of intervention and which can remain largely
unchanged. This should also give you an indication of the effort required to
actually complete the migration.

Step 5) Make it build
At this point, you may feel ready to start the migration. You have a list of
modules and files to work with so you can distribute work packages to your
team. They will work away on their assigned tasks and in three months time
everyone will get back together to integrate their work and create a shiny
new version of your application.

Unfortunately, you would have to be extremely lucky for this approach to
work. Many years of software industry experience have shown that so-called
big-bang integrations are risky and likely to fail altogether. The agile para-
digm of continuously making small improvements applies to migrations as
well. You want to be able to integrate and test small changes as soon as pos-
sible. How can you possibly do that if 90% of your application doesn’t build?

The answer is simple: make it build! Do whatever it takes to make your appli-
cation build. Stub out the bits that do not build, temporarily remove mod-
ules from your make files if they are too large to just stub out, use the pre-
processor to remove blocks of lines from the build – just keep commenting
away until it builds. The secret is to do this in a controlled, reproducible, and
reversible way because you have to know exactly which bits you have tem-

You need to establish a hierarchy in your
code that identifies the fundamental pieces
of your architecture and work towards
completing those first.

KDAB | the Qt, OpenGL and C++ experts

porarily removed so they can go back in again after they have been properly
migrated. You might not need to migrate all of that stubbed out code – most
codebases on long evolved projects contain a fair amount of dead code, and
a migration is the perfect opportunity to uncover and remove it.

To make sure you’re properly tracking migration-related comments, use a
very distinct label, and not TODO. Although it may be a bit extreme, some-
thing like I_AM_STUBBING_THIS_OUT_BUT_IT_NEEDS_TO_GO_BACK_IN_LAT-
ER is a far better choice. Why? Chances are that your code is already littered
with TODOs and you need to be able to clearly distinguish migration stub-
bing in the source. Don’t worry about making your code look ugly; these will
all be removed once you are done!

Once you’ve gotten things to build cleanly, you may have nothing left but a
‘main()’ function – and possibly even that will contain stubbed out code. That
is fine at this point; you are going to bring back things quickly in the next
step.

Step 6) Migrate the core
Now that you’ve gotten things to build, you may be tempted once more to
think now is a good time to distribute the work across the team and inte-
grate it as soon as possible. Not just yet! We need to be selective. To show
why, let’s assume you are migrating a CAD application that allows you to
create technical drawings. It’s not very helpful to work on a ‘Preferences’
dialog that lets the user configure how the drawing is displayed because you
can’t create a drawing yet. Ideally you’d be able to load a well-defined demo
file on which to test the ‘Preferences’ dialog – but the loading module won’t
be done either.

What you need to do is establish a hierarchy in your code that identifies the
key features of your application that are fundamental to everything else and
work towards completing those pieces. In our CAD example, that could be
opening, saving, and to some degree modifying the document. Core func-
tionality will be dependent on some low-level modules that you’ll absolutely
need – such as string or container handling – and these will need to be
worked on first.

Migrations of long evolved
projects give developers
the perfect opportunity to
uncover and remove dead
code

You don’t want over-optimistic schedule
guesses to disappoint waiting customers or
put pressure on your engineering team that
results in release-unready software.

KDAB | the Qt, OpenGL and C++ experts

Once you have migrated the core features and their dependencies, chances
are that you will have a lot fewer dependencies in the rest of the code. That’s
the point when you can farm out work in parallel.

Step 7) Track your status
Now that your team is happily working away on your migration, completing
a few modules every week, integrating and testing as they go, how do you
know if you’re on track? You don’t want over-optimistic schedule guesses to
disappoint all those waiting customers or, worse yet, put pressure on your
engineering team that results in release-unready software.

We know from experience that providing detailed, realistic numbers is
something that instils confidence in your progress. At KDAB, we rely on tools
and algorithms we’ve developed for migration status tracking that automat-
ically harvest the code base and generate status report spreadsheets and
nice burn-down charts. Even if you don’t have a sophisticated tool, you can
manually assess your progress – by periodically sampling the commits or
grepping for migration comments. How you execute your tracking may be
dependent on your code base.

Whatever approach you use we strongly advise you to come up with a way
to track your progress. And the more you automate these progress reports,
the more likely it is that you will actually use them. While you develop your
measurement procedure though, a word of warning: it is easy to forget
about the long tail of migration. Your development speed is going to dra-
matically slow down towards the end of the project when parallelization
becomes less possible and only bug-fixing tasks remain. Don’t assume that
you’ll be able to maintain the same pace even when there’s just a few items
left to address – those may be among the most difficult to fix.

Step 8) Create a test plan
Whether you perform a migration yourself or choose to outsource it, a test
plan is an asset of tremendous value. It does not necessarily require auto-
mation – it could simply be a document with steps and expected results.
(And something simple like this may be the best approach at the beginning
stages of a GUI migration.) Even if you do not have a test plan, you might
have something that you can turn into one. For example, you may have a
user’s manual. Can you perform everything the user’s manual describes with

We often get asked if we could create a tool
that automates the entire migration but
we believe that human engineers are still the
best qualified to do software migrations.

KDAB | the Qt, OpenGL and C++ experts

your new version? While you are checking that, write down the steps that
you take to verify and voilà, there’s your new test plan. (As a next step, you
can turn this into an automated test suite.)

Assuming your test plan is complete, it allows you to check your migration
feature set, gives you another means of tracking progress, and tells you
when you are done. If you’re confident that your test plan is complete and
you can perform all tests with the expected outcome, then congratulations –
you’ve completed your migration!

As a confirmation that you’re finished, look for any remaining code that is
still stubbed out. Its presence indicates either that your test plan is not as
complete as you thought it was (and you still have a bit of work to do), or
that this particular code is not needed any longer. Double-check, ask for a
review, and, if the code really isn’t needed, go ahead and remove it.

Step 9) Automate what you can
We often get asked at KDAB if we could create a tool that automates the
entire migration. That thought has often occurred to us but unfortunately it’s
an idea that’s doomed to fail because no matter how sophisticated the tool,
it would be primarily driven by mechanical text substitutions. Understanding
the intent behind the code is often necessary to make a successful transfor-
mation. Even if you were able to migrate half of the software automatically
– an amazing achievement – you’d be left with a number of difficult-to-find
bugs in the auto-translated portion, not to mention the remaining half that
needs to be cleaned up. We believe that today human engineers are still
best qualified to do software migrations.

This isn’t to say that there isn’t room for software tools in a migration. Let
people migrate the software line-by-line but give them all the tooling help
you can. At KDAB, we’ve developed countless internal migration tools over
the years that allow our engineers to be as productive as possible. For
example, in a migration from Motif to Qt, code like the following would likely
occur rather often:

XmToggleButtonGadgetSetState(_onoff, sc && sc->isEnabled(), false);

This can be automatically migrated to

 ui->_onoff->setChecked(sc && sc->isEnabled());

It’s natural to think about making other
desirable changes while you’re moving
software into a new framework but you
should avoid the temptation.

KDAB | the Qt, OpenGL and C++ experts

It’s not desirable for an engineer to type in all the input parameters each
and every time – it’s time consuming and error-prone. However, an editor
that’s configured with lots of intelligent macros to automate these types of
transformations can be of tremendous help. Once the engineer identifies
the situation, she can trigger the code transformation and review the out-
come instead of having to manually look up parameter order, and copy and
paste the separate bits.

Another example of tooling help is switching versions between the origi-
nal unchanged application and the new one under migration. We typically
keep the two code trees next to each other, and use KDAB-designed tools
to allow an engineer to quickly jump between the two versions of the same
file in order to check on what any given piece of code looked like in the old
version, open another window with the diffs, and so on. Search tools are
also an indispensable part of a migration engineer’s toolbox. As an exam-
ple – it’s a great help for an engineer to place the cursor over an identifier
and hit a key combination to instantly locate its definition or any references
throughout the source tree. While most modern IDEs offer these capabili-
ties, many don’t function unless the source builds properly – which makes
them useless for migration work. Text-based searches using complex regu-
lar expressions can provide many other ways to make pointed analysis even
on poorly-formed source code.

Step 10) Resist feature creep
It’s natural to think about making other desirable changes while you’re mov-
ing the software into its new framework. You’re already getting your hands
dirty in the code – why not add a new oft-requested feature, refactor some
ill-formed code, or face-lift the UI to make it look like an iPhone?

Of course you could do any of these things but in our experience you should
avoid the temptation. Replacing one UI framework with another or bringing
an application from one operating system to multiple ones – or doing both
– is a major undertaking like a heart transplant. No surgeon would fix a bro-
ken bone while performing a heart transplant because there’s a great risk of
messing up one or the other operation, or not completing either properly.
Software migration is just the same – make all the changes you want but
do them sequentially with complete and thorough tests in between. The
elapsed time will be shorter and the risk will be a far less.

While modern
IDEs easily

locate all
references,
many don’t

function
unless the

source builds
properly

Although many details can only be learned
by experience, if you should have to perform
more than one migration, you’ll be much
better at it on the second project.

KDAB | the Qt, OpenGL and C++ experts

It can be a hard sell to management to spend a lot of money on a migration
that has no visible improvements. Still, you should fight that fight to safe-
guard the future. Explain that you have accumulated technical debt that
needs to be paid off now or you’ll have to pay off more of it later because of
the accumulated interest. The more technical debt accumulates, the harder
it will be to make changes of any kind without breaking something else. Fea-
ture releases and bug fixes will take more time to implement, creating de-
lays, stress, and reduced customer satisfaction with a continually increasing
time-to-market. If you are coming to Qt from a single-platform toolkit such
as MFC or Motif, there is one big new feature you’re adding that’s inherent in
the migration effort itself, which is availability on multiple platforms.

Similarly, you usually shouldn’t bother cleaning up the code before migra-
tion. Logically, the cleaner your code base, the faster and more cost-efficient
your migration will be. However, if you refactor and restructure it before-
hand, you won’t have a defined standard baseline to work from. This is true
even if the majority of work is done by a third-party like KDAB. If you have a
test suite that guarantees the cleaned code meets all tests, you might con-
sider doing a bit of clean-up work first. But if you’re not prepared to make
an official release for the cleaned version (even if it’s internal), don’t bother
– you always want to have a sanitized starting point. Mitigate your risk by
serializing tasks; you can always refactor after the migration.

Conclusion
We have given you some steps and strategies on how to plan, prepare, and
execute a migration. Although many of the details can only be learned by
experience, if you should have to perform more than one migration, you’ll
be much better at it on the second (or subsequent) projects. If you have any
questions about your migration that you’d like to discuss with an expert,
please feel free to contact us at info@kdab.com.

mailto:info%40kdab.com?subject=

If you have any questions about your
migration that you’d like to discuss with an
expert, please feel free to contact us at
info@kdab.com.

About the KDAB Group
The KDAB Group is the world’s leading software consultancy for architec-
ture, development and design of Qt, C++ and OpenGL applications across
desktop, embedded and mobile platforms. KDAB is the biggest independent
contributor to Qt. Our experts build run-times, mix native and web technol-
ogies, and solve hardware stack performance issues and porting problems
for hundreds of customers, many among the Fortune 500. KDAB’s tools and
extensive experience in creating, debugging, profiling and porting com-
plex applications help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market leading, hands-on,
training for Qt, OpenGL and modern C++ in multiple languages. Founded
in 1999, KDAB has offices throughout North America and Europe.

© 2017 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks belong to their respective owners.

www.kdab.com

Matthias Kalle Dalheimer

Kalle is the President and CEO of
KDAB. He has actively developed
with Qt since 1996 and is a found-
ing member of the KDE project. He
has written numerous books, both
in English and in his native German,
including “Running Linux” and “Pro-
gramming with Qt”. Kalle holds an
MS in Computer Science and has
taught more than thirty Qt class-
es for companies like Ericsson,
Motorola, and J.D. Edwards. In his
spare time, he enjoys orienteering,
cross-country skiing, and reading
history books.

mailto:info%40kdab.com?subject=
http://www.kdab.com

