
KDAB | the Qt, OpenGL and C++ experts 1

Avoiding new C++ features means developers
won’t be using more easily remembered, more
consistent, more maintainable, better-performing,
and less error-prone constructs. The compiler will
be hampered from generating more optimized code
and offering more meaningful clues to undiscovered
bugs. There may also be the need to avoid, rewrite,
or work around software libraries that now require
C++11/14/17 support.

You might be tempted to rewrite your codebase
in a younger language, although it’s not necessary.
C++11, C++14, and C++17 have transformed the
C++ language in ways that make it as programmer-
friendly as more recent languages but with many
essential benefits that continue to make it the best
choice for the most demanding software-engineering
projects. Modernizing your C++ may be the best way
to both improve your team’s efficiency as well as
future-proof your software investment. We can help.

New releases of the C++ language maintain incredibly strong
backwards compatibility, making it easy to keep older C++
code working properly as standards march forward. This
makes C++ an unusually safe choice over other commonly used
programming languages, but it also comes with inherent risk:
Codebase stagnation.

MODERNIZATION
C++

“C++11 feels like a new language. I write
code differently now than I did in C++98.
The C++11 code is shorter, simpler, and
usually more efficient than what I used
to write.”

– Bjarne Stroustrup, creator of C++

KDAB | the Qt, OpenGL and C++ experts 2

• Performance focus. We take advantage of
cutting-edge C++11 and C++14 features while
being pragmatic about compiler, system, and
hardware limitations. We squeeze every cycle out
of embedded devices, decrease and optimize
the memory consumption of your software, and
improve performance on both the CPU and the
GPU. Profile-driven analysis allows us to quickly
identify the problematic areas even in a large
codebase and develop solutions to fix the issues.

• Selective improvements. We select the best
data structures for each workload based on
target system, cache utilization, and concurrency
requirements. We also analyze problems with
existing code and improve its performance by
parallelizing it, both on the CPU and/or the GPU
– optimizing for customer-specific configurations
of CPU, GPU, memory, and flash disk.

• Rigorous testing. We modernize legacy code by
using incremental improvements combined with
continuous testing.

• Parallel code bases. We know many customers
need to maintain multiple code bases as they
migrate or when they must support multiple
product lines. We work efficiently to find bugs,
data races, and deadlocks across code bases,
making sure that all fixes and improvements are
kept in sync.

• Advanced tools. We have extensive experience
with static code- and runtime-analysis tools,
many of which we helped to develop. This
enables us to fix a vast range of common code
defects and inefficiencies, quickly and easily.

• Training courses. Our trainers are expert
developers and C++ contributors – and have
a great deal of experience and advice on
how to properly use C++ today. While we
tackle modernizing your code base, we can
simultaneously educate your engineers so they
are more efficient and can immediately help
contribute.

KDAB has broad, deep experience delivering cost-effective,
long-term, pragmatic solutions that modernize existing C++
codebases without losing functionality during the process

WHY SHOULD YOU USE KDAB FOR YOUR C++ MODERNIZATION EFFORT?

KDAB | the Qt, OpenGL and C++ experts 3

• Type inference: Auto, decltype, and return
type deduction

• Move semantics and rvalue references

• Static assertions and constant
expressions

• Lambda functions: Inner, direct eval,
generic

• Standardized concurrency/multi-
threading

• Inline namespaces

• Nullptr and strongly-typed enums

• Uniform initialization

• Template aliases and variadic templates

• User-defined, binary, and UTF-8 literals

• Default and deleted functions

• Range-based for loops

• Inheriting and delegating constructors

• Standard library updates, including
tuples, smart pointers, hash tables, and
node-based access

• Less cognitive load = easier to write correct
code. Because modern C++ removes needless
details that the compiler can safely deduce and
improves standard ways of doing operations, a
programmer needs to think about special cases
much less often. That makes software more
straightforward to write properly the first time.

• More expressive = easier to write, simpler to
understand, better-performing. C++11 adds
powerful features like lambda functions that
provide a simple mechanism to achieve complex
behavior in a consistent way. And “move seman-
tics” provides library authors with a high degree
of control over something other languages don’t
concern themselves with – optimal performance.

• More consistent = better for cross-platform.
C++11/14 tackles the subtle complexities of
Unicode, internationalization, and multi-thread-
ing much better than its predecessors, ensuring
better consistency with less platform-specific
code in today’s world of multi-platform support.

• Better libraries = safer and easier to use,
more efficient. A number of changes to the
standard libraries expands scope and improves
functionality so there’s less custom code to add.
A number of features, added specifically for
better library creation, also leads to simpler APIs
that execute more efficiently.

• Richer type system = fewer bugs, better code.
New C++ compilers combined with new C++
language features are better able to understand
the programmer’s intent, identifying bugs
at compile-time and generating optimal code.

WHAT ARE YOU MISSING IF YOU’RE NOT USING MODERN C++?

A concise summary of improvements in C++11, C++14, and C++17 is a list of highly technical software features.
What does that mean in non-technical terms? Overall, these changes make C++ simpler to learn, easier to use,
better-performing, with fewer bugs.

Key technical improvements

KDAB | the Qt, OpenGL and C++ experts 4

C++ static code analysis tools

• Clazy – analyzes C++ code to enforce best
practices and detect errors using frameworks
like Boost, STL, and Qt

C++ error checking tools

• Valgrind memcheck and helgrind – detects
difficult to find memory-related bugs in code and
uncovers race conditions between threads in
multithreaded applications

• GCC and Clang sanitizers – finds memory and
threading errors on very large applications

C++ profiling tools

• Linux perf, Intel VTune – locates code hotspots
and offers deep insights into code performance,
including deadlocks and thread contention

• Linux perf, LTTNG, Windows Performance
Analyzer – provides visibility of software
interactions across the entire software stack,
from operating system kernel through to your
application

• heaptrack, Visual Studio – pinpoints memory
allocations and data structures that allocate the
most memory, allowing developers to reduce
memory footprint

C++ MODERNIZATION TOOLS – AND WHY YOU NEED TO USE THEM

Having the right tools for the job and the expertise to use them properly always makes the development
process that much more efficient. Because we’ve worked on developing many of these tools (and continue to
maintain some), we know them inside and out, and can help train your team on configuring and using them to
get the most out of your C++ modernization effort. (This will also help your team maintain, debug, and improve
your software long after your modernization effort has ended.)

KDAB | the Qt, OpenGL and C++ experts 5

C++: Best at the extremes

Faster-running software and efficient use
of memory, two hallmarks of C++, are
especially critical for embedded systems,
mobile devices, and cloud-based software –
areas that dominate today’s programming
disciplines. On the small end, being careful
with CPU cycles and data bytes is important
for constrained hardware but being wasteful
with computing resources also degrades
battery life. Speed and size matters for cloud
computing because of the high duplication of
processes. With thousands of instances of the
same application running, a few bytes wasted
quickly becomes significant, and an extra
second of run-time raises electricity bills.

• High-level at minimal cost. C++ allows
programmers to simply express complicated
concepts, making it efficient to write powerful
software. However, unlike many other languages,
the cost in processing power and memory usage
of high-level expressions is comparatively low.
That means there is little penalty to be paid for
programmer efficiency.

• Low-level access. Many languages hide the
underlying representation of the machine to
prevent novice programmers from making
mistakes. C++ protects programmers from
making common errors, but it also allows direct
access to hardware registers, peripherals, and
memory when needed. This makes it possible
for embedded programmers to fully utilize the
hardware and allows experts to create very
efficient software.

• Highly portable. C++ is available on nearly
every size and shape of hardware platform and
operating system, and yet is strictly standardized.
This makes it possible to write applications in
C++ that cover all existing, planned, and future
hardware platforms. Cross-platform dominance
of this magnitude means a great number of
libraries and open source programs are available
to help engineers build C++ based solutions.

• Better resource control. Languages that
attempt to protect programmers from memory
errors introduce significant inefficiencies.
Memory management outside of direct
programmer control can lead to unexpected
garbage-collection hesitations and unnecessary
memory consumption. C++ uses a more hands-
on memory model that provides tighter and
predictable control of memory resources – along
with other resources, like files, peripherals, and
concurrency objects.

WHY IS C++ STILL RELEVANT?

Of all the programming languages available today, you might wonder why C++ is still such a desirable
choice. C++ excels at producing programs with demanding requirements such as high performance, small
memory footprint, low-level hardware control, robust execution, and reliable response times. C++ delivers on
demanding applications for a number of reasons.

KDAB | the Qt, OpenGL and C++ experts 6

www.kdab.com

© 2018 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks belong to their respective owners.

Migration work is never fun – it’s
meticulous, detailed, and time consuming.
More importantly, it doesn’t focus on your
differentiation. Considering the number of

hours it takes engineers to learn through
trial-and-error how to modernize your C++
projects, using KDAB is a great way to save
on time, money, and antacid tablets.

KDAB offers a wide range of C++ services that may
be applicable for your project.

• Adding capacity to your development team

• Writing complex applications

• Integrating code with various operating systems

• Supplementing and enriching existing
applications

• Improving large-scale maintainability

• Future-proofing applications

• Improving portability to other hardware and
software platforms

• Solving concurrency and threading challenges

• Modernizing and cleaning up of existing code
bases

• Performing analysis and optimizations

• Training engineers on modernization techniques

• Educating engineers on static analysis, error
checking, and profiling tools

About the KDAB Group

The KDAB Group is the world’s leading software
consultancy for architecture, development and
design of Qt, C++ and OpenGL applications across
desktop, embedded and mobile platforms. KDAB
is the biggest independent contributor to Qt and
is the world’s first ISO 9001 certified Qt consulting
and development company. We build run-times, mix
native and web technologies, and solve hardware
stack performance issues and porting problems for

hundreds of customers, many among the Fortune
500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex
applications help developers worldwide to deliver
successful projects. KDAB’s trainers, all full-time
developers, provide market leading, hands-on,
training for Qt, OpenGL and modern C++ in
multiple languages. Founded in 1999, KDAB has
offices throughout North America and Europe.

