
Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

1/28

Using The QML Profiler

Ulf Hermann

The Qt Company

October 8, 2014 / Qt Developer Days 2014



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

2/28

Outline

1 Reasons for Using a Specialized Profiler for Qt Quick

2 The QML Profiler

3 Analysing Typical Problems

4 Live Examples of Profiling and Optimization

5 New Features for the QML Profiler



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

3/28

Outline

1 Reasons for Using a Specialized Profiler for Qt Quick

2 The QML Profiler

3 Analysing Typical Problems

4 Live Examples of Profiling and Optimization

5 New Features for the QML Profiler



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

4/28

Classical optmization workflow

Minimize total time a program will take to run:
• Instrument binary to count and time function calls
• Or use an emulator that keeps track of function calls

Create call statistics to see:
• which functions took most time
• which functions are called most often

Go back and optimize those.

Problematic with Qt Quick applications ...



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

5/28

Profiling JIT-compiled code

QV4::SimpleScriptFunction::call(QV4::Managed*,QV4::CallData*)

0 x 0 0 0 0 0 0 0 0 1 2 7 9 a 0 0 0

0 x 0 0 0 0 0 0 0 0 1 2 7 a 0 0 0 00 x 0 0 0 0 0 0 0 0 1 2 c 1 4 9 f 0

0 x 0 0 0 0 0 0 0 0 1 2 7 a 3 8 4 0

QV4::Runtime::setProperty(. . .)QV4::Runtime::callProperty(...)

Profiling QML code with Valgrind

• What functions does it
call there?

• No useful results on
JIT-compiled or
interpreted code from
general purpose
profilers

• No symbolic information
available

• No stack unwinding with
non-emulating profilers



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

6/28

“Long” run time
Single Signal Handler that
runs for 40ms

• doesn’t make big dent
in statistics

• leads to 2 dropped
frames in a row

• might be harmless
• when does it run?

Relate single events on a
timescale to pin down
problems.



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

7/28

“Many” calls

Badly timed object creation

• Time for each object creation isn’t significant here.
• Number of calls may be more interesting, but ...
• their distribution over the frames is most important!



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

8/28

Outline

1 Reasons for Using a Specialized Profiler for Qt Quick

2 The QML Profiler

3 Analysing Typical Problems

4 Live Examples of Profiling and Optimization

5 New Features for the QML Profiler



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

9/28

The QML Profiler
In Analyze mode of Qt Creator

1 start/stop profiling
2 control execution directly or profile external process
3 switch recording on and off while application is

running to receive traces for specific time ranges.
4 select event types to be recorded (Qt Creator 3.3+)
5 clear current trace

Save and load trace files from context menu.



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

10/28

Timeline View

• Pixmap Cache: slow loading
or large pictures

• Animations, Scene Graph:
composition of scene graph

• Memory Usage: JavaScript
heap and garbage collector

• Binding, Signal Handling,
JavaScript: QML/JavaScript
execution times



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

11/28

Events View

• Statistical profile of QML/JavaScript
• For problems that lend themselves to the classical

workflow
• Optimize the overall most expensive bits to get a

general speedup



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

12/28

Outline

1 Reasons for Using a Specialized Profiler for Qt Quick

2 The QML Profiler

3 Analysing Typical Problems

4 Live Examples of Profiling and Optimization

5 New Features for the QML Profiler



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

13/28

It’s slow. What is wrong?

• Too much JavaScript executed in few frames?
• All JavaScript must return before GUI thread advances
• Frames delayed/dropped if GUI thread not ready
• Result: Unresponsive, stuttering UI

• Creating/Painting/Updating invisible items?
• Takes time in GUI thread
• Same effect as “Too much JavaScript”

• Triggering long running C++ functions?
• Paint methods, signal handlers, etc. triggered from QML
• Also takes time in GUI thread
• Harder to see in the QML profiler as C++ isn’t profiled



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

14/28

Too much Javascript

• Watch frame rate in Animations and Scene Graph
• Gaps and orange animation events are bad
• JavaScript category shows functions and run time
• Stay under 1000/60 ≈ 16ms per frame



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

15/28

Invisible Items

• Check again for dropped frames
• Check for many short bindings or signal handlers

=> Too many items updated per frame
• QSG_VISUALIZE=overdraw shows scene layout
• Watch for items outside the screen or underneath

visible elements



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

16/28

Long running C++ functions

• Dropped frames, but no JavaScript running?
• Large unexplained gaps in the timeline?
• Check your custom QQuickItem implementations
• Use general purpose profiler to explore the details



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

17/28

Outline

1 Reasons for Using a Specialized Profiler for Qt Quick

2 The QML Profiler

3 Analysing Typical Problems

4 Live Examples of Profiling and Optimization

5 New Features for the QML Profiler



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

18/28

Example 1: Too much JavaScript
Glitch in SameGame example when starting new game

• All items created from one JavaScript function call
• Takes about 100ms
• About 7 dropped frames in a row
• Enough unused CPU time during menu removal

animation
Solution:

• Create invisible items during menu animation
• Later only set them visible
• Setting visibility is cheaper than creating items



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

18/28

Example 1: Too much JavaScript
Glitch in SameGame example when starting new game

• All items created from one JavaScript function call
• Takes about 100ms
• About 7 dropped frames in a row
• Enough unused CPU time during menu removal

animation

Solution:
• Create invisible items during menu animation
• Later only set them visible
• Setting visibility is cheaper than creating items



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

18/28

Example 1: Too much JavaScript
Glitch in SameGame example when starting new game

• All items created from one JavaScript function call
• Takes about 100ms
• About 7 dropped frames in a row
• Enough unused CPU time during menu removal

animation
Solution:

• Create invisible items during menu animation
• Later only set them visible
• Setting visibility is cheaper than creating items



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

19/28

Conventions for profiling Qt Creator

• gray color scheme: profiling one of the others

• red color scheme: buggy pre-3.0 as “bad” example

• green color scheme: v3.3 preview

• blue color scheme: patched v3.3 preview

• Trace files are just loaded into “colored” Qt Creators
to trigger activity. Don’t interpret the data.



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

20/28

Example 2: Even more JavaScript
QML Profiler stutters on horizontal resizing.

• Overview always iterates all events to paint itself
• is implemented in JavaScript
• but: only updated on loading and resizing

Solution1:
• Stretch the code over multiple frames
• Use Timer to trigger deferred JavaScript execution
• onTriggered should not take longer than a frame

(around 16ms)
• Downside: Overview painting is “animated” now

1with potential for further optimization ...



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

20/28

Example 2: Even more JavaScript
QML Profiler stutters on horizontal resizing.

• Overview always iterates all events to paint itself
• is implemented in JavaScript
• but: only updated on loading and resizing

Solution1:
• Stretch the code over multiple frames
• Use Timer to trigger deferred JavaScript execution
• onTriggered should not take longer than a frame

(around 16ms)
• Downside: Overview painting is “animated” now

1with potential for further optimization ...



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

20/28

Example 2: Even more JavaScript
QML Profiler stutters on horizontal resizing.

• Overview always iterates all events to paint itself
• is implemented in JavaScript
• but: only updated on loading and resizing

Solution1:
• Stretch the code over multiple frames
• Use Timer to trigger deferred JavaScript execution
• onTriggered should not take longer than a frame

(around 16ms)
• Downside: Overview painting is “animated” now

1with potential for further optimization ...



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

21/28

Example 3: Painting outside viewport
Slow scrolling if timeline categories expanded

• Coordinate system marks cover a large space in
vertical direction

• can take a long time to paint (up to 10ms)
• are mostly invisible most of the time.

Solution2:
• Only paint visible part of coordinate system
• Directly set virtual contentHeight on Flickable
• Painted area “sliding” in virtual contentHeight
• Reduces painting time to about 1 - 2ms

2with potential for further optimization ...



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

21/28

Example 3: Painting outside viewport
Slow scrolling if timeline categories expanded

• Coordinate system marks cover a large space in
vertical direction

• can take a long time to paint (up to 10ms)
• are mostly invisible most of the time.

Solution2:
• Only paint visible part of coordinate system
• Directly set virtual contentHeight on Flickable
• Painted area “sliding” in virtual contentHeight
• Reduces painting time to about 1 - 2ms

2with potential for further optimization ...



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

21/28

Example 3: Painting outside viewport
Slow scrolling if timeline categories expanded

• Coordinate system marks cover a large space in
vertical direction

• can take a long time to paint (up to 10ms)
• are mostly invisible most of the time.

Solution2:
• Only paint visible part of coordinate system
• Directly set virtual contentHeight on Flickable
• Painted area “sliding” in virtual contentHeight
• Reduces painting time to about 1 - 2ms

2with potential for further optimization ...



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

22/28

Example 4: Expensive C++
Timeline scrolling still slow for some traces

• Timeline data painted for all categories, no matter
how many are visible

• Takes a lot of time, especially in “dense” places.
• Hard to see in QML Profiler, as painting is

implemented in C++.
• QSG_VISUALIZE=overdraw can help.

Solution3:
• Again, only paint visible part of timeline.
• Same technique as with coordinate system.

3with potential for further optimization ...



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

22/28

Example 4: Expensive C++
Timeline scrolling still slow for some traces

• Timeline data painted for all categories, no matter
how many are visible

• Takes a lot of time, especially in “dense” places.
• Hard to see in QML Profiler, as painting is

implemented in C++.
• QSG_VISUALIZE=overdraw can help.

Solution3:
• Again, only paint visible part of timeline.
• Same technique as with coordinate system.

3with potential for further optimization ...



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

22/28

Example 4: Expensive C++
Timeline scrolling still slow for some traces

• Timeline data painted for all categories, no matter
how many are visible

• Takes a lot of time, especially in “dense” places.
• Hard to see in QML Profiler, as painting is

implemented in C++.
• QSG_VISUALIZE=overdraw can help.

Solution3:
• Again, only paint visible part of timeline.
• Same technique as with coordinate system.

3with potential for further optimization ...



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

23/28

Example 5: What about the labels?
Hiccup when expanding large categories

• Repeater creates all elements at the same time.
• Use ListView to create and delete on demand?
• Potentially save some memory?

But:
• Labels are rarely updated.
• On-demand creation and removal during scrolling,

when a lot of other code has to run?
• Creation and removal triggers garbage collector.

Solution: Probably not worth it in this case



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

23/28

Example 5: What about the labels?
Hiccup when expanding large categories

• Repeater creates all elements at the same time.
• Use ListView to create and delete on demand?
• Potentially save some memory?

But:
• Labels are rarely updated.
• On-demand creation and removal during scrolling,

when a lot of other code has to run?
• Creation and removal triggers garbage collector.

Solution: Probably not worth it in this case



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

23/28

Example 5: What about the labels?
Hiccup when expanding large categories

• Repeater creates all elements at the same time.
• Use ListView to create and delete on demand?
• Potentially save some memory?

But:
• Labels are rarely updated.
• On-demand creation and removal during scrolling,

when a lot of other code has to run?
• Creation and removal triggers garbage collector.

Solution: Probably not worth it in this case



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

24/28

Outline

1 Reasons for Using a Specialized Profiler for Qt Quick

2 The QML Profiler

3 Analysing Typical Problems

4 Live Examples of Profiling and Optimization

5 New Features for the QML Profiler



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

25/28

Better Scene Graph Profiling

• Will be included in Professional and Enterprise
packages of Qt Creator 3.3

• Visualizes all the timing information available from
the scene graph



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

26/28

JavaScript Heap profiler

• UI in Qt Creator 3.2+ (Professional and Enterprise)
• Will be usable with Qt 5.4+
• Tracks page allocations of the memory manager
• Tracks memory allocations on JavaScript heap
• Shows when the garbage collector runs



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

27/28

Selective recording

• Switch off recording of events you’re not interested in
• Reduces amount of data created
• Record longer traces without running into memory

bottlenecks
• Smaller trace files, faster loading



Using The QML
Profiler

Ulf Hermann

Why?

What?

How To

Examples

New Features

28/28

Various UI improvements

• Drag&Drop reordering of categories
• Completely hide categories to reduce height of

timeline
• Resize rows in timeline


	Reasons for Using a Specialized Profiler for Qt Quick
	The QML Profiler
	Analysing Typical Problems
	Live Examples of Profiling and Optimization
	New Features for the QML Profiler

