
© Zühlke 2014

Programmers rejoice:
QML makes business people understand
Qt Developer Days 2014 | Hinrich Specht 2. September 2014 Folie 1

© Zühlke 2014

About me
My company

Where I live

What I do

at work

© Zühlke 2014

Agenda
 Motivation
 A real life example
 The hurdles of DSL creation
 What Qt has to offer
 PresentationSystem demo
 Extending Qml‘s type system
 When to use Qml for DSL creation and when not

What is it all about?

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 3

© Zühlke 2014

A common problem in software development

 Qt Developer Days 2014 | Hinrich Specht

25. September 2014 Folie 4

#?=&f\ (%)
You mean
If(obj != NULL) {
 name=„Qt“
}?

© Zühlke 2014

What if…

• Stakeholders and developers could share a
common language?

• changes to the software could be made in
that language, too?

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 5

© Zühlke 2014

A real life example

2. September 2014 Qt Developer Days 2014 | Hinirch Specht Folie 6

© Zühlke 2014

The heating system example. Before.

 Qt Developer Days 2014 | Hinrich Specht 25. September 2014 Folie 7

Adjust
requirements

Implementation

Build & Deploy

Rollout to test
site

Gather data

Up to 4
weeks, only
in winter

© Zühlke 2014

The heating system example. After.

Qt Developer Days 2014 | Hinrich Specht 25. September 2014

Adjust
requirements

Adjust software
via DSL

Cont.Integration

Rollout to test
site

Gather data

< 1 week

Folie 8

© Zühlke 2014

Why...

Qt Developer Days 2014 | Hinrich Specht

25. September 2014 Folie 9

…isn‘t there a DSL in every
software project?

© Zühlke 2014

DSLs are hard to develop

2. September 2014 Qt Developer Days 2014 | Hinrich Specht

Folie 10

Formal definition

• Grammar

• Schema

• Metamodel

• Abstract Syntax

 Tooling

• Parser

• Validator

• Compiler

• Editor / IDE

© Zühlke 2014

DSL creation with XText

2. September 2014 Qt Developer Days 2014 | Hinrich Specht

Folie 11

XText is a powerful, DSL-based language development framework
Steps to create a DSL using Xtext:

 Textual definition of syntax and semantic model for your DSL.

Language: Grammar
 Configure generator that creates java packages and editor for

your DSL. Language: MWE2
 Set up Maven builds for CI of your DSL
 Update Eclipse
 Use your DSL
 Not targeting Java?  Use Xtend for code generation

© Zühlke 2014

Programming languages compared

Qt Developer Days 2014 | Hinrich Specht 25. September 2014 Folie 12

C, COBOL

C++, Java, C#

QML, WPF, Silverlight Object oriented, declarative, special
purpose, Model driven

Procedure oriented, imperative

Object oriented, imperative,general
purpose

Assembler Code Processor instruction set, no
abstraction at all

Comes with an extensible type system!

© Zühlke 2014

DSL creation with Qml – what Qt has to offer

2. September 2014 Qt Developer Days 2014 | Hinrich Specht

• Custom types can be made available in Qml

• Types used are backed by C++ classes

• CodeCompletion for custom types immediately
available in Creator

• Easy to learn

• Effort needed to create a (simple) DSL is low

• No other programming languages needed!

Folie 13

© Zühlke 2014

Extending the Qml type system

2. September 2014 Qt Developer Days 2014 | Hinrich Specht

• Any custom types can be registered with QML‘s
type system (but must inherit from QObject)

• Different forms of registration are available to
define the runtime behaviour of your types:
– Creatable types
– Uncreatable types
– Interfaces
– Singletons

Folie 14

© Zühlke 2014

The QmlPresentationSystem

• is a DSL for creating slide decks

• makes use of QML‘s extensible type system

• is easy to use (compared to programming a slide
deck with C++ or any other general purpose
language)

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 15

© Zühlke 2014

How to use your own custom types
in Qml

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 16

qmlRegisterType<YourType>("com.your.namespace", 1, 0, „QmlTypeName");

Q_PROPERTY(DataElementIds::EnDataElementIds identifier

 READ getIdentifier MEMBER m_id)

Public class YourType : public Qobject {…}

1. Derive from QObject

3. Register type in Qml

2. Define Properties

© Zühlke 2014

How to use your own custom types in
Qml

2. September 2014 Qt Developer Days 2014 | Hinrich Specht

YourType{

 displayName: „YourInstanceName"

 value: false

 identifier: YourId

}

import com.your.namespace 1.0

4. Import custom namespace in Qml file

6. Ready to use custom type in Qml

5. Run qmake

Folie 17

© Zühlke 2014

Using singleton types

2. September 2014 Qt Developer Days 2014 | Hinrich Specht

int qmlRegisterSingletonType(const char * uri, int versionMajor, int versionMinor,
const char * typeName, QJSValue(*) (QQmlEngine *, QJSEngine *) callback)

QObject and QJSValue types can be registered as singleton types.

Registering types that are defined in C++:

Folie 18

int qmlRegisterSingletonType(const char * uri, int versionMajor, int versionMinor,
const char * typeName, QObject *(*) (QQmlEngine *, QJSEngine *) callback)

http://qt-project.org/doc/qt-5/qjsvalue.html
http://qt-project.org/doc/qt-5/qjsengine.html
http://qt-project.org/doc/qt-5/qobject.html
http://qt-project.org/doc/qt-5/qjsengine.html

© Zühlke 2014

Using singleton types

2. September 2014 Qt Developer Days 2014 | Hinrich Specht

int qmlRegisterSingletonType(const QUrl & url,
const char * uri, int versionMajor, intversionMinor, const char * qmlName)

Folie 19

Registering types that are defined in Qml:

http://qt-project.org/doc/qt-5/qurl.html

© Zühlke 2014

Using uncreatable types

2. September 2014 Qt Developer Days 2014 | Hinrich Specht

int qmlRegisterUncreatableType(const char * uri, int versionMajor, int versionMinor,
const char * qmlName, const QString & message)

Folie 20

Note:
To use enums in Qml, they must be wrapped in a class.

http://qt-project.org/doc/qt-5/qstring.html

© Zühlke 2014

Drawbacks you have to deal with

2. September 2014 Qt Developer Days 2014 | Hinrich Specht

• Mingling with QtQuick types and QObject
properties

• No integrated code generator for creation of
non-Qt-code

• Editor is not always as smart as it could be

• Fixed syntax

Folie 21

© Zühlke 2014

See how it works

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 22

© Zühlke 2014

The sample application

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 23

HardwareLayer

GPIOs

DataLayer

DataElements

DataSwitch

GpioMappings

© Zühlke 2014

When is a Qml based DSL
the right choice?

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 24

© Zühlke 2014

What is a domain?

Qt Developer Days 2014 | Hinrich Specht 25. September 2014

Stakeholders‘ domains Your domains

Heating system

Drive control

Accounting

Routing

…

System composition

StateMachines

UIs

Data layer

…

Simply said: Everything is a domain

Folie 25

© Zühlke 2014

Think about a QML based DSL, when

 Qt Developer Days 2014 | Hinrich Specht

25. September 2014

• other tools would require too much effort

• simple DSL features are needed

• no code generation is required

• the DSL will mainly be used to define static aspects

Folie 26

© Zühlke 2014

Think about using other tools

Qt Developer Days 2014 | Hinrich Specht 25. September 2014

• when you want your own syntax / semantics

• code generation for different languages is
required

• when you want to have a clean DSL (without
artifacts from QObject)

Folie 27

© Zühlke 2014

Q&A / Discussion

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 28

