
© Zühlke 2014 

Programmers rejoice: 
QML makes business people understand 
Qt Developer Days 2014 | Hinrich Specht 2. September 2014 Folie 1 



© Zühlke 2014 

About me  
My company 

Where I live 

What I do 

at work 



© Zühlke 2014 

Agenda 
 Motivation 
 A real life example 
 The hurdles of DSL creation 
 What Qt has to offer 
 PresentationSystem demo 
 Extending Qml‘s type system 
 When to use Qml for DSL creation and when not 
 
 
 
 

What is it all about? 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 3 



© Zühlke 2014 

A common problem in software development 

 

 

 

 Qt Developer Days 2014 | Hinrich Specht 
 

25. September 2014 Folie 4 

#?=&f\ (%) 
You mean 
If(obj != NULL) { 
     name=„Qt“ 
}? 



© Zühlke 2014 

What if… 

• Stakeholders and developers could share a  
common language? 

• changes to the software could be made in 
that language, too?  

  

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 5 



© Zühlke 2014 

A real life example 

2. September 2014 Qt Developer Days 2014 | Hinirch Specht Folie 6 



© Zühlke 2014 

The heating system example. Before. 

 Qt Developer Days 2014 | Hinrich Specht 25. September 2014 Folie 7 

Adjust 
requirements 

Implementation 

Build & Deploy 

Rollout to test 
site 

Gather data 

Up to 4 
weeks, only 
in winter 



© Zühlke 2014 

The heating system example. After. 

Qt Developer Days 2014 | Hinrich Specht 25. September 2014 

Adjust 
requirements 

Adjust software 
via DSL 

Cont.Integration 

Rollout to test 
site 

Gather data 

< 1 week 
 

Folie 8 



© Zühlke 2014 

Why...  

Qt Developer Days 2014 | Hinrich Specht 
 

25. September 2014 Folie 9 

…isn‘t there a DSL in every  
software project? 



© Zühlke 2014 

DSLs are hard to develop 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht 
 

Folie 10 

Formal definition 

• Grammar 

• Schema  

• Metamodel 

• Abstract Syntax  

 

 Tooling 

• Parser 

• Validator  

• Compiler 

• Editor / IDE  

 



© Zühlke 2014 

DSL creation with XText 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht 
 

Folie 11 

XText is a powerful, DSL-based language development framework 
Steps to create a DSL using Xtext: 
 
 Textual definition of syntax and semantic model for your DSL. 

Language: Grammar 
 Configure generator that creates java packages and editor for 

your DSL. Language: MWE2 
 Set up Maven builds for CI of your DSL 
 Update Eclipse 
 Use your DSL 
 Not targeting Java?  Use Xtend for code generation  



© Zühlke 2014 

Programming languages compared  

Qt Developer Days 2014 | Hinrich Specht 25. September 2014 Folie 12 

C, COBOL 

C++, Java, C# 

QML, WPF, Silverlight Object oriented, declarative, special 
purpose, Model driven 

Procedure oriented, imperative 

Object oriented, imperative,general 
purpose 

Assembler Code Processor instruction set, no 
abstraction at all 

Comes with an extensible type system! 



© Zühlke 2014 

DSL creation with Qml – what Qt has to offer 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht 

• Custom types can be made available in Qml 

• Types used are backed by C++ classes 

• CodeCompletion for custom types immediately 
available in Creator 

• Easy to learn 

• Effort needed to create a (simple) DSL is low 

• No other programming languages needed! 

 

Folie 13 



© Zühlke 2014 

Extending the Qml type system 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht 

• Any custom types can be registered with QML‘s 
type system (but must inherit from QObject) 

• Different forms of registration are available to 
define the runtime behaviour of your types: 
– Creatable types 
– Uncreatable types 
– Interfaces 
– Singletons 

 

 

Folie 14 



© Zühlke 2014 

The QmlPresentationSystem 

• is a DSL for creating slide decks 

• makes use of QML‘s extensible type system  

• is easy to use (compared to programming a slide  
deck with C++ or any other general purpose  
language)   

 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 15 



© Zühlke 2014 

How to use your own custom types 
in Qml 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 16 

qmlRegisterType<YourType>("com.your.namespace", 1, 0, „QmlTypeName"); 

 

Q_PROPERTY(DataElementIds::EnDataElementIds identifier  

 READ getIdentifier MEMBER m_id) 

Public class YourType : public Qobject {…} 

 

1. Derive from QObject 

3. Register type in Qml 

2. Define Properties 



© Zühlke 2014 

How to use your own custom types in 
Qml 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht 

YourType{  

 displayName: „YourInstanceName"  

 value: false  

 identifier: YourId  

} 

import com.your.namespace 1.0 

4. Import custom namespace in Qml file 

6. Ready to use custom type in Qml 

5. Run qmake 

Folie 17 



© Zühlke 2014 

Using singleton types 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht 

int qmlRegisterSingletonType(const char * uri, int versionMajor, int versionMinor, 
const char * typeName, QJSValue(* ) ( QQmlEngine *, QJSEngine * ) callback) 

 

QObject and QJSValue types can be registered as singleton types. 
 
Registering types that are defined in C++: 

Folie 18 

int qmlRegisterSingletonType(const char * uri, int versionMajor, int versionMinor, 
const char * typeName, QObject *(* ) ( QQmlEngine *, QJSEngine * ) callback) 

http://qt-project.org/doc/qt-5/qjsvalue.html
http://qt-project.org/doc/qt-5/qjsengine.html
http://qt-project.org/doc/qt-5/qobject.html
http://qt-project.org/doc/qt-5/qjsengine.html


© Zühlke 2014 

Using singleton types 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht 

int qmlRegisterSingletonType(const QUrl & url, 
const char * uri, int versionMajor, intversionMinor, const char * qmlName) 

 

 

Folie 19 

Registering types that are defined in Qml: 

http://qt-project.org/doc/qt-5/qurl.html


© Zühlke 2014 

Using uncreatable types 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht 

int qmlRegisterUncreatableType(const char * uri, int versionMajor, int versionMinor, 
const char * qmlName, const QString & message) 

 

Folie 20 

Note: 
To use enums in Qml, they must be wrapped in a class.  

http://qt-project.org/doc/qt-5/qstring.html


© Zühlke 2014 

Drawbacks you have to deal with 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht 

• Mingling with QtQuick types and QObject 
properties  

• No integrated code generator for creation of 
non-Qt-code 

• Editor is not always as smart as it could be 

• Fixed syntax 

 

Folie 21 



© Zühlke 2014 

See how it works 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 22 



© Zühlke 2014 

The sample application 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 23 

HardwareLayer 

GPIOs 

DataLayer 

DataElements 

DataSwitch 

GpioMappings 



© Zühlke 2014 

When is a Qml based DSL 
the right choice?  

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 24 



© Zühlke 2014 

What is a domain? 

Qt Developer Days 2014 | Hinrich Specht 25. September 2014 

Stakeholders‘ domains Your domains 

Heating system 

Drive control 

Accounting 

Routing 

… 

System composition 

StateMachines 

UIs 

Data layer 

… 

Simply said: Everything is a domain 

Folie 25 



© Zühlke 2014 

Think about a QML based DSL, when 

 Qt Developer Days 2014 | Hinrich Specht 
 

25. September 2014 

• other tools would require too much effort 

• simple DSL features are needed 

• no code generation is required 

• the DSL will mainly be used to define static aspects 

Folie 26 



© Zühlke 2014 

Think about using other tools 

Qt Developer Days 2014 | Hinrich Specht 25. September 2014 

• when you want your own syntax / semantics 

• code generation for different languages is 
required 

• when you want to have a clean DSL (without 
artifacts from QObject) 

 

Folie 27 



© Zühlke 2014 

Q&A / Discussion 

2. September 2014 Qt Developer Days 2014 | Hinrich Specht Folie 28 


