
Introduction to Lock-Free Programming

Olivier Goffart

2014

About Me

QStyleSheetStyle

Itemviews

Animation Framework

QtScript (porting to JSC and V8)

QObject, moc

QML Debugger

Modularisation

. . .

About Me

Offering Qt help and services: Visit http://woboq.com

C++ Code browser: http://code.woboq.org

http://woboq.com
http://code.woboq.org

Goal of this presentation

Introduction to Lock-Free programming

Singleton

1 class MySingleton {

2 static MySingleton *s_instance;

3 static QMutex s_mutex;

4

5 public:

6

7 static MySingleton *instance ()

8 {

9 QMutexLocker lock(& s_mutex);

10 if (! s_instance) {

11 s_instance = new MySingleton ();

12 }

13 return s_instance;

14 }

15

16 //

17 };

Singleton (wrong)

1 static MySingleton *instance ()

2 {

3 if (! s_instance) {

4 QMutexLocker lock(& s_mutex);

5 if (! s_instance) {

6 s_instance = new MySingleton ();

7 }

8 }

9 return s_instance;

10 }

Computer architecture

Compiler re-order

CPU out of order execution

Caches, Write buffers

Singleton (Better)

1 class MySingleton {

2 static QAtomicPointer <MySingleton > s_instance;

3 static QMutex s_mutex;

4 public:

5 static MySingleton *instance ()

6 {

7 MySingleton *inst = s_instance.loadAcquire ();

8 if (!inst) {

9 QMutexLocker lck(& s_mutex);

10 if (! s_instance.load ()) { // relaxed

11 inst = new MySingleton ();

12 s_instance.storeRelease(inst);

13 }

14 }

15 return inst;

16 }

17 };

Singleton (Best)

1 static MySingleton *instance ()

2 {

3 static MySingleton inst;

4 return &inst;

5 }

See also: Q GLOBAL STATIC

Singleton (Best)

1 static MySingleton *instance ()

2 {

3 static MySingleton inst;

4 return &inst;

5 }

See also: Q GLOBAL STATIC

C++11 Memory model

C++98

No mentions of threads.

The compiler is allowed to do any optimisation that is consistant to a single thread.

C++11

Defines race condition

Restricts what kind of optimisation the compiler is allowed to do in regards to
threading.

std::atomic , std::thread, std::mutex

C++11 Memory model

C++98

No mentions of threads.

The compiler is allowed to do any optimisation that is consistant to a single thread.

C++11

Defines race condition

Restricts what kind of optimisation the compiler is allowed to do in regards to
threading.

std::atomic , std::thread, std::mutex

C++11 Memory model

C++11 §1.10

21. The execution of a program contains a data race if it contains two
conflicting actions in different threads, at least one of which is not atomic,
and neither happens before the other. Any such data race results in
undefined behavior.

Lock-Free programming

What’s wrong with mutexes?

All threads have to wait if a thread holding a lock is descheduled.

More context switches waste CPU time.

For real-time applications: priority inversion, unsafe in interrupts handlers,
convoying.

What’s wrong with mutexes?

All threads have to wait if a thread holding a lock is descheduled.

More context switches waste CPU time.

For real-time applications: priority inversion, unsafe in interrupts handlers,
convoying.

Lock-free algorithms

Sometimes faster

No risks of deadlock, even if a thread is terminated/killed

More difficult to design and understand

, but also fun

Lock-free algorithms

Sometimes faster

No risks of deadlock, even if a thread is terminated/killed

More difficult to design and understand, but also fun

QAtomicInt/QAtomicPointer

API

testAndSet

fetchAndStore

fetchAndAdd

Memory Ordering

Ordered

Acquire

Release

Relaxed

Mix and Match

1 bool QAtomicInt :: testAndSetAcquire(int expectedValue ,

2 int newValue)

3 int QAtomicInt :: fetchAndAddOrdered(int valueToAdd)

4 T *QAtomicPointer <T>:: fetchAndStoreRelaxed(T *newValue)

Fetch and Store

1 T *QAtomicPointer <T>:: fetchAndStore ...(T *newValue)

2 {

3 T *oldValue = _q_value;

4 _q_value = newValue;

5 return oldValue;

6 }

Fetch and Add

1 int QAtomicInt :: fetchAndAdd ...(int valueToAdd)

2 {

3 int oldValue = _q_value;

4 _q_value += valueToAdd;

5 return oldValue;

6 }

Test and Set

1 bool QAtomicInt :: testAndSet ...(int expectedValue ,

2 int newValue)

3 {

4 if (_q_value != expectedValue)

5 return false;

6 _q_value = newValue;

7 return true;

8 }

Memory ordering

Acquire

Memory access following the atomic
operation may not be re-ordered
before that operation.

Ordered

Same Acquire and Release

combined: operations may not be
re-ordered

Release

Memory access before the atomic
operation may not be re-ordered
after that operation.

Relaxed

Operations may be re-ordered
before or after.

Singleton (Lock-free)

1 class MySingleton {

2 static QAtomicPointer <MySingleton > s_instance;

3

4 public:

5 static MySingleton *instance ()

6 {

7 MySingleton *inst = s_instance.loadAcquire ();

8 if (!inst) {

9 inst = new MySingleton ();

10 if (! s_instance.testAndSetRelease (0, inst)) {

11 delete inst;

12 inst = s_instance.loadAcquire ();

13 }

14 }

15 return inst;

16 }

17 };

Lock-Free Stack

Lock-Free Stack (Push)

Lock-Free Stack (Push)

Lock-Free Stack (Push)

Lock-Free Stack (Push)

Lock-Free Stack (Push)

Lock-Free Stack (Push)

Lock-free stack

1 struct Stack {

2 QAtomicPointer <Node > head;

3 void push(Node *n) {

4 do {

5 n->next = head.loadAcquire ();

6 } while (!head.testAndSetOrdered(n->next , n));

7 }

8 // ...

9 };

Lock-Free Stack (Pop)

Lock-Free Stack (Pop)

Lock-free stack Pop (wrong)

1 struct Stack {

2 QAtomicPointer <Node > head;

3 // ...

4 Node *pop() {

5 Node *n;

6 do {

7 n = head.loadAcquire ();

8 } while(n && !head.testAndSetOrdered(n, n->next));

9 return n;

10 }

11 };

ABA Problem

ABA Problem

Solutions

Add a serial number

Multiple words compare and swap

Garbage collector / Reference count

Hazard pointers

ABA Problem

Solutions

Add a serial number

Multiple words compare and swap

Garbage collector / Reference count

Hazard pointers

Example in Qt

Reference counting

QMutex

Q GLOBAL STATIC

Allocation of timer ids

. . .

Other examples

RCU (Read-copy-update)

Multiple words compare and swap.

Transactional memory

Transactional memory

In the Future... (N3718) :
1 void push(Node *n) {

2 transaction_atomic {

3 n->next = head;

4 head = n;

5 }

6 }

7

8 Node *pop() {

9 Node *n;

10 transaction_atomic {

11 n = head;

12 if (n)

13 head = n->next;

14 }

15 return n;

16 }

Conclusion

Use mutexes.

Profile.

The END

Questions

olivier@woboq.com

Visit http://woboq.com.
Read More: http://woboq.com/blog/introduction-to-lockfree-programming.html,

http://woboq.com/blog/internals-of-qmutex-in-qt5.html

http://woboq.com
http://woboq.com/blog/introduction-to-lockfree-programming.html
http://woboq.com/blog/internals-of-qmutex-in-qt5.html

The END

Questions

olivier@woboq.com

Visit http://woboq.com.
Read More: http://woboq.com/blog/introduction-to-lockfree-programming.html,

http://woboq.com/blog/internals-of-qmutex-in-qt5.html

http://woboq.com
http://woboq.com/blog/introduction-to-lockfree-programming.html
http://woboq.com/blog/internals-of-qmutex-in-qt5.html

	Introduction
	Lock-Free programming
	QAtomic API
	Lock-Free Stack
	ABA Problem

