
 Low-Level Hardware
Programming for
Non-Electrical Engineers

Jeff Tranter
Integrated Computer Solutions, Inc.

Agenda

Agenda
●About the Speaker
●Introduction
●Some History
●Safety
●Some Basics
●Hardware Interfaces
●Sensors and Other Devices
●Embedded Development Platforms
●Relevant Qt APIs
●Linux Drivers and APIs
●Tips
●Gotchas
●References

About The Speaker

About The Speaker
●Jeff Tranter <jtranter@ics.com>
●Qt Consulting manager at Integrated Computer Solutions, Inc.
●Based in Ottawa, Canada
●Used Qt since 1.x
●Originally educated as Electrical Engineer

mailto:jtranter@ics.com

Introduction

Introduction

Some History

Some History
●1970s: Hard-coded logic
●1980s: 8-bit microprocessors (assembler)
●Today: 64-bit, multicore, 3D, etc. (high-level languages)

●This presentation won't cover:
●Programming languages other than C/C++
●Much systems other than embedded Linux
●Video, sound
●Building embedded software: cross-compilation, debugging, etc.

A Few Words About Safety

A Few Words About Safety
●High voltage
●High current (e.g. batteries)
●High temperature (e.g. soldering)
●Eye protection (solder, clip leads)
●Chemicals

ESD

ESD
●Electrostatic discharge, i.e. static electricity
●Many devices can be damaged by high voltages from static
●Use static safe packaging, work mat, wrist strap, soldering iron

Some Basics
●Ohms Law: I = V / R (sometimes E)
●Power P = V x I

Measuring

Measuring (e.g. with a multimeter)
●Voltage - in parallel (across)
●Current - in series (break the circuit)
●Resistance - out of circuit, powered off

Electronic Components

Common Electronic Components
●Passive components:
● resistor unit: Ohm (kilohm, megohm)
● capacitor unit: Farad (µF, nF, pF)
● inductor unit: Henry (µH, mH)
●Active components:
● vacuum tube (valve)
● diode/LED
● transistor (many types)
● ICs (many types)

Electronic Components

Common Electronic Components
●Components identified by:
● part identifier (e.g. 7400)
● value (e.g. 1000 ohms)
● power rating (e.g. 1 watt)
● voltage rating (e.g. 10 VDC)
●Component values marked using colour codes or number
conventions

Common Metric Prefixes

Common Metric Prefixes

Name Prefix Multiplier

Pico p 10-12

Nano n 10-9

Micro µ 10-6

Milli m 10-3

Kilo k 103

Mega M 106

Giga G 109

Tera T 1012

Digital versus Analog

Digital versus Analog
●Digital: represent values/numbers using discrete voltages
●Modern computers generally use binary, two values, 1/0, true false
●Value represented as a voltage within a range, dependent on
technology used

●e.g. standard TTL logic - 0 to 0.4V is false, 2.6 to 5.0V is true

Digital versus Analog

Digital versus Analog
●Analog: can take any value within a continuous range
●Digital to Analog (D/A) and Analog to Digital (A/D) conversion
processes can convert

●Conversion between the two is not perfect
●Key factors are sample rate (samples/sec) and sample size (bits)
●e.g. Audio CD: 16 bit sample size, 44100 bits per second sample
rate

Hardware Interfaces - Processor
Terminology

Hardware Interfaces - Processor Terminology
●CPU: Central Processing Unit. Hardware within a computer that
carries out the instructions of a computer program.

●Microprocessor: Incorporates the functions of a computer's
central processing unit (CPU) on a single integrated circuit.

●Microcontroller: Small computer on a single integrated circuit
containing a processor core, memory, and programmable
input/output peripherals.

●SOC: System On a Chip; integrated circuit that integrates all
components of a computer or other electronic system into a single
chip.

Hardware Interfaces - Processor
Terminology

Hardware Interfaces - Processor Terminology
●SOM: System on Module (SOM), a type of single-board computer
(SBC).

●SiP: System In Package (SiP), also known as a Chip Stack MCM. A
number of integrated circuits enclosed in a single module
(package).

●DSP: Specialized microprocessor optimized for the needs of digital
signal processing.

●GPU: Graphics Processing Unit, specialized CPU designed to
rapidly manipulate and alter memory to accelerate the creation of
images in a frame buffer intended for output to a display

Hardware Interfaces - Memory

Hardware Interfaces - Memory
●RAM, DRAM, Static RAM
●ROM, PROM, EPROM, EEPROM
●Flash memory: NAND, NOR

Hardware Interfaces - Simple I/O

Hardware Interfaces - Simple I/O
●Inputs
●Outputs
●Bi-directional
●Tri-state (high-Z), pull-up, pull-down
●Open collector/open drain
●Analog
●Digital
●PWM

Hardware Interfaces - I²C

Hardware Interfaces - I²C
●I²C (Inter-Integrated Circuit), pronounced I-squared-C or I-two-C
●Multi-master, multi-slave, single-ended, serial computer bus
invented by Philips Semiconductor

●Used for attaching low-speed peripherals to computer
motherboards and embedded systems

●Uses two bidirectional open-drain lines, Serial Data Line (SDA) and
Serial Clock Line (SCL), pulled up with resistors.

●Typical voltages used are 5V or 3V, although other voltages are
permitted

●Will cover programming under Linux later

Hardware Interfaces - SMBus

Hardware Interfaces - SMBus
●System Management Bus (SMBus or SMB)
●Simple single-ended two-wire bus for lightweight communication
●Commonly found on PC motherboards for communication with
power management

●Derived from I²C
●Defined by Intel in 1995

Hardware Interfaces - SPI

Hardware Interfaces - SPI
●Serial Peripheral Interface or SPI bus
●Also known as SSI (Synchronous Serial Interface)
●Full duplex, synchronous, serial data link
●Four-wire serial bus
●Often used with sensors and SD cards
●Devices communicate in master/slave mode
●Multiple slave devices are allowed with individual slave select lines

Hardware Interfaces - GPIO

Hardware Interfaces - GPIO
●General-Purpose Input/Output
●Generic pin that can be controlled by user at run time
●Typically can be programmed as input or output
●May support tri-state, pull-up pull-down, PWM, etc.
●Supported by e.g. Arduino, BeagleBone, Raspberry Pi

Hardware Interfaces - USB

Hardware Interfaces - USB
●Ubiquitous
●Latest spec is 3.1
●Sometimes used (only) for power
●See later for some gotchas

Hardware Interfaces - IEEE-
488/GP-IB/HP-IB

Hardware Interfaces - IEEE-488/GP-IB/HP-IB
●Short-range digital communications bus
●Created in the late 1960s by Hewlett-Packard for use with
automated test equipment

●Expensive connectors and cables
●Now mostly replaced by more recent standards such as USB,
FireWire, Ethernet

Hardware Interfaces - MODBUS

Hardware Interfaces - MODBUS
●Serial communications protocol
●Originally developed by Modicon for use with programmable logic
controllers (PLCs)

●Commonly used for connecting industrial electronic devices
●Used in supervisory control and data acquisition (SCADA) systems
●Enables communication among many (approx. 240) devices
connected to same network

Hardware Interfaces - Serial/UART
RS-232/RS-422/RS-485

Serial/UART RS-232/RS-422/RS-485
●Asynchronous serial interfaces, send one bit at a time
●Need to agree on baud rate, data bits, start/stop bits, parity
●RS-232 uses voltage levels of +/- 3-15V
●RS-422 is differential signalling, longer distance
●RS-485 supports multi-point
●Some USB devices are serial devices (e.g. FTDI)
●On newer computers can use USB to serial converter

Hardware Interfaces - Parallel
Ports

Hardware Interfaces - Parallel Ports
●As a generic term, means port with multiple data bits (as opposed
to single bit serial)

●Typically data and handshaking lines as well
●In the past referred to a standard Centronics/IEEE-1284 PC printer
port, now mostly obsolete

Hardware Interfaces - JTAG

Hardware Interfaces - JTAG
●Joint Test Action Group
●Common name for IEEE 1149.1 Standard Test Access Port and
Boundary-Scan Architecture

●Initially intended for testing printed circuit boards using boundary
scan (still widely used for this)

●Also used for IC debug ports
●Most embedded processors implement JTAG
●Supports operations like single stepping and breakpointing (in
hardware)

Hardware Interfaces - 1-Wire

Hardware Interfaces - 1-Wire
●Device communications bus system designed by Dallas
Semiconductor (sometimes called Dallas 1 Wire)

●Provides low-speed data, signalling, and power over a single signal
●Master and slave devices
●Similar to I²C, but with lower data rates and longer range
●Typically used to communicate with small inexpensive devices
such as digital thermometers and weather instruments

●Only two wires: data and ground. Device also powered by data line.
●Can be supported on Linux using GPIO and bit banging
●OWFS One Wire File System provides library and utilities for Linux
and other platforms (owfs.org)

Hardware Interfaces - HD44780
LCD

Hardware Interfaces - HD44780 LCD
●One of the most common dot matrix LCD display controllers
●Simple interface that can be connected to a general purpose
microcontroller or microprocessor

●Many manufacturers make compatible displays
●Can display ASCII characters, Japanese Kana characters, and some
symbols

●Low cost (under US$20)
●Typically 2 line by 16 or up to 80 characters
●16 pin connector, 4 or 8 data bits
●Various drivers/libraries available for Linux if you don't want to
code it all yourself

Hardware Interfaces - MIDI

Hardware Interfaces - MIDI
●Musical Instrument Digital Interface
●Standard protocol, interface, and connector for electronic musical
instruments

●Carries event messages that specify notation, pitch and velocity
●Also used for lighting
●Supports multiple devices
●A single MIDI link can carry up to sixteen channels of information
●Standardized in 1983
●Mostly used by professional musicians

Hardware Interfaces - PC
Keyboard

Hardware Interfaces - PC Keyboard
●Original PC/XT/AT (5-pin DIN)
●PS/2 (6-pin mini-DIN)
●USB (USB type A)
●(first 2) protocols can be implemented by bit banging

Hardware Interfaces - PWM

Hardware Interfaces - PWM
●Pulse Width Modulation
●Can be used for D/A conversion
●Some devices use PWM for control
●Can be done in software with GPIO pins
●Some GPIO pins have direct hardware support for PWM

Hardware Interfaces - Stepper
Motors

Hardware Interfaces - Stepper Motors
●Brushless DC electric motor that divides a full rotation into a
number of equal steps

●Motor's position can then be commanded to move and hold at one
of these steps without any feedback sensor

●Unipolar and bipolar types
●Typically need driver circuit for suitable voltage/current
●Read/write heads of hard and floppy disk drives typically use this
●Easy to control using Arduino

Hardware Interfaces - Servos

Hardware Interfaces - Servos
●Usually refers to hobby servo motors developed for radio control
●Small, low-cost, mass-produced actuators used for radio control
and small-scale robotics

●Standard three-wire connection: two wires for a DC power supply
and one for control

●Position controlled using a PWM signal
●Directly supported by Arduino (without additional hardware)

Hardware Interfaces - DSI/CSI

Hardware Interfaces - DSI/CSI
●Display Serial Interface
●Camera Serial Interface
●Specifications by the Mobile Industry Processor Interface (MIPI)
Alliance

●DSI for LCD displays
●CSI for cameras
●Serial bus and a communication protocol between host and device
●Both are present on Raspberry Pi but currently no open source
drivers

Sensors and Related Devices

Sensors and Related Devices
●IR transmitters/receivers
●Sensors for physical values: temperature, light intensity, air
pressure, humidity, pH, radiation, motion, proximity, radiation,
sound, touch, etc.

●Accelerometers
●Output: light (LED), sound (speaker, piezo), motion (motor, stepper)
●GPS
●Commonly interface using analog, digital, I2C etc.
●See, e.g. http://www.adafruit.com/categories/35

Displays

Displays
●LEDs: discrete, bargraph, matrix, 7-segment
●LCD: numeric, text, bitmapped graphics
●Video: VGA, composite, HDMI, etc.

Real-Time Considerations

Real-Time Considerations
●System is real-time if correctness of an operation depends on the
time in which it is performed

●Classified by the consequence of missing a deadline
●Hard real-time: missing a deadline is a total system failure
●Soft real-time: usefulness/quality of service degrades after missing
deadline

●Supported by an RTOS (Real-Time Operating System)
●Standard Linux is not an RTOS

Approaches for Supporting Real-
Time

Approaches for Supporting Real-Time
●Set priority, scheduling policy (e.g. Linux/POSIX: setpriority,
sched_setscheduler)

●Implement in kernel
●Real-time add-ons (e.g. for Linux)
●True RTOS (e.g. QNX)
●Offload to other hardware like microcontroller or PIC

Embedded Development
Platforms

Embedded Development Platforms
●Many to choose from
●Most vendors have evaluation boards
●Some popular ones:

●Raspberry Pi
●BeagleBoard/BeagleBone
●Intel NUC, Edison
●Arduino

Raspberry Pi

Raspberry Pi
●Developed as low-cost platform for education
●Broadcom SOC (700 MHz ARM)
●Supports various OSes including Linux
●USB, SD card, Ethernet, audio out, composite and HDMI video
●Micro USB power
●Model A: US$25, 256MB RAM, 1 USB
●Model B: US$35, 512MB RAM, 2 USB
●Model B+: lower power (3W), 4 USB, microSD, more GPIO
●Compute Module: DIMM form factor, suitable for OEM, more GPIO

BeagleBoard/BeagleBone

BeagleBoard/BeagleBone
●Open source SBC from TI and Digi-Key and Farnell/Element14
●OMAP3530 SOC (ARM)
●600 MHZ to 1 GHz clock speed
●128MB to 52MB RAM
●USB On-The-Go, DVI-D, PC audio, SDHC, JTAG, HDMI
●Accelerated 2D, 3D, OpenGL ES 2.0
●On-board and SD/MMC flash
●Cost $45 to $149
●Models: BeagleBoard, BeagleBoard-xM, BeagleBone, BeagleBone
Black

●Run various operating systems including Linux and Android
●Add-on "capes"

Intel Offerings

Intel Offerings

NUC:
●Next Unit of Computing (NUC)
●small form factor PC designed by Intel
Galileo:
●Arduino-compatible development boards based on x86
●Compatible with Arduino IDE and shields
Edison:
●Small computer for wearable devices
MinnowBoard:
●Low-cost Atom board

Texas Instruments Offerings

Texas Instruments Offerings
●e.g. Sitara ARM AM335X Starter Kit

Arduino

Arduino
●Family of open source single board microcontrollers
●Most use 8-bit Atmel AVR processors
●No operating system per se

Arduino

Arduino

Highly popular due to "perfect storm" of:
●Low cost (clones under US$10)
●Ease and speed of programming (easy to use IDE, high-level
language based on simplified C++)

●Many programming tutorials, examples, libraries
●Large user base
●Digital and analog inputs/outputs
●Many add-on "shields"

Arduino

Code Example
#define LED_PIN 13

void setup() {
 pinMode(LED_PIN, OUTPUT); // Enable pin 13 for digital output
}

void loop() {
 digitalWrite(LED_PIN, HIGH); // Turn on the LED
 delay(1000); // Wait one second (1000 milliseconds)
 digitalWrite(LED_PIN, LOW); // Turn off the LED
 delay(1000); // Wait one second
}

Relevant Qt APIs

Relevant Qt APIs

Several Qt modules fit category of low-level hardware:
●Serial Port
●Networking
●BlueTooth
●Location/Positioning API (GPS, Wi-Fi)
●Sensors (accelerometer, compass, etc.)

Linux Drivers and APIs

Linux Drivers and APIs
●Will cover I2C, SPI, GPIO
●Can use these from user space
●In some cases may want to write kernel code
●Kernel pros: access to kernel interfaces such as IRQ handlers or
other layers of the driver stack

●Kernel cons: harder to write and debug, error can crash entire
machine

Linux Drivers and APIs - I2C

Linux Drivers and APIs - I2C
●Kernel-level drivers make I2C interfaces look like standard Linux
character devices.

●Devices are /dev/i2c-n where n is adaptor number starting from 0
●Also see /sys/class/i2c-adapter
●Linux i2c-tools package provides useful utilities like "i2cdetect".
●Can program using standard system calls open(), ioctl(), read(),
write()

Linux Drivers and APIs - I2C

Linux Drivers and APIs - I2C
●Also higher level SMBus commands defined in <linux/i2c-dev.h>
●(SMBus is a subset of I2C, with a stricter protocol definition)
 __s32 i2c_smbus_write_quick(int file, __u8 value);
 __s32 i2c_smbus_read_byte(int file);
 __s32 i2c_smbus_write_byte(int file, __u8 value);
 __s32 i2c_smbus_read_byte_data(int file, __u8 command);
 __s32 i2c_smbus_write_byte_data(int file, __u8 command, __u8 value);
 __s32 i2c_smbus_read_word_data(int file, __u8 command);
 __s32 i2c_smbus_write_word_data(int file, __u8 command, __u16 value);
 __s32 i2c_smbus_process_call(int file, __u8 command, __u16 value);
 __s32 i2c_smbus_read_block_data(int file, __u8 command, __u8 *values);
 __s32 i2c_smbus_write_block_data(int file, __u8 command, __u8 length, __u8
*values);

Linux Drivers and APIs - I2C

Linux Drivers and APIs - I2C
●On some platforms, like Raspberry Pi, may need to manually load
the relevant kernel drivers, e.g. "sudo modprobe i2c-dev" and set
permissions if you need to access them as non-root user, e.g.
"sudo chmod o+rw /dev/i2c*"

●Can put a script in /etc/rc.local to do this on boot up
●See https://www.kernel.org/doc/Documentation/i2c/dev-interface

Linux Drivers and APIs - SPI

Linux Drivers and APIs - SPI
●Appear as character devices.
●Creates character device nodes at /dev/spidevB.C where:
● B is the SPI bus (master) number
● C is the chip-select number of specific SPI slave
●SPI devices have a limited user space API, supporting basic half-
duplex read() and write() access to SPI slave devices.

●Using ioctl() requests, full duplex transfers and device I/O
configuration are also available

Linux Drivers and APIs - SPI

Linux Drivers and APIs - SPI
●read() for read only SPI transaction, with a single chip-select
activation

●write() for write only SPI transaction, with a single chip-select
activation

●Defined in <linux/spi/spidev.h>
●See https://www.kernel.org/doc/Documentation/spi/spidev

Linux Drivers and APIs - GPIO

Linux Drivers and APIs - GPIO
●Linux has unified driver for GPIO on different platforms
●Often GPIO pins can also be I2C, SPI, PWM, UART, etc. depending
on how programmed

●Typically can control on a per pin basis: pin direction (input or
output), read inputs, write to outputs, and maybe pullup, pulldown,
open collector, and enable interrupts

●Typically need to run as root or change permissions on device files
●See https://www.kernel.org/doc/Documentation/gpio/
●Different ways to control

Linux Drivers and APIs - GPIO

Linux Drivers and APIs - GPIO
●Method 1: Kernel system calls
●#include <linux/gpio.h>
●Old, deprecated integer-based interface
●New, preferred descriptor-based interface
●Examples:
● int gpio_get_value(unsigned int gpio);
● void gpio_set_value(unsigned int gpio, int value);

Linux Drivers and APIs - GPIO

Linux Drivers and APIs - GPIO
●Method 2: Sysfs
●Can be controlled via sysfs interface under /sys/class/gpio
●Need to "export" pin that you want to use by writing pin number to
/sys/class/gpio/export

●Will see /sys/class/gpio/gpioN appear
●Write to /sys/class/gpio/unexport to free when done
●Set direction by writing "in" or "out" to
/sys/class/gpio/gpioN/direction

●Set value by writing "0" or "1" to /sys/class/gpio/gpioN/value
●Read value from /sys/class/gpio/gpioN/value
●Info about GPIO controllers in /sys/class/gpio/gpiochipN/

Linux Drivers and APIs - GPIO

Linux Drivers and APIs - GPIO
●Raspberry Pi example (shell script):

#!/bin/sh
echo "4" > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio4/direction
echo "1" > /sys/class/gpio/gpio4/value
cat /sys/class/gpio/gpio4/value
echo "4" > /sys/class/gpio/unexport

Linux Drivers and APIs - GPIO

Linux Drivers and APIs - GPIO
●Method 3: Memory Mapped
●Works on devices where GPIO hardware is memory mapped e.g.
Raspberry Pi

●Hardware specific, but very fast
●Steps:
● Open /dev/mem
● Call mmap() to get pointer to appropriate physical memory
● Close /dev/vmem
● Access memory as a volatile unsigned * (macros can make it
easier)

●Examples (with macros) exist for Raspberry Pi:
http://elinux.org/RPi_Low-level_peripherals#C

Linux Drivers and APIs - GPIO

Linux Drivers and APIs - GPIO
●Method 4: Kernel Driver
●For maximum performance and flexibility, write customer kernel
level code

●As mentioned earlier, provides access to kernel interfaces such as
IRQ handlers or other layers of the driver stack and gives you
control over preemption.

●Typically an order of magnitude harder than user space code to
write and debug; errors can crash entire machine.

GPIO - Libraries

GPIO - Libraries
●Various libraries available
●WiringPi is a Linux Raspberry Pi library that is mostly compatible
with Arduino: http://wiringpi.com

●Also supports serial, SPI, I2C
●e.g.
 pinMode(0, OUTPUT); // aka BCM_GPIO pin 17
 digitalWrite(0, 1); // On
 delay(500); // mS
 digitalWrite(0, 0); // Off
 delay(500);

Tips

Tips
●Tools:
● Small wire cutters, pliers, strippers
● Magnifier
● Temperature controlled soldering station, solder
● Desoldering tool (braid, pump)
● Heat gun

Soldering

Soldering
●Not hard, but requires practice
●Use proper iron and solder
●It is possible to hand solder the larger SMT parts
●Can even do reflow using toaster oven and controller
●Lots of good YouTube videos
●Recommend the "Soldering is Easy" comic book:
http://mightyohm.com/blog/2011/04/soldering-is-easy-comic-book/

Test Equipment

Test Equipment:
●DMM (very inexpensive)
●DC power supply, e.g. +/-5V, +/-12V, 0-30V
●Logic probe
●FTDI friend
●Bus Pirate
●Oscilloscope (analogue or digital, wide price range)

Tips

Tips
●Parts:
● resistors
● capacitors
●Miscellaneous:
● hookup wire (solid for solderless breadboards)
● clip leads (including small ones for IC pins)
● DIP clips
● good collection of cables and adaptors (USB, serial, header
connectors)

● proto boards (wireless breadboard)
● SD/microSD cards, adaptors

Tips

Getting Started
●Buy a low-cost board like Raspberry Pi, BeagleBoard or Arduino
and spend some time with it.

●Start with a flashing LED and then progress to more complex work

Hardware Construction Methods

Hardware Construction Methods
● Breadboards
● Protoboards
● Wirewrapping
● Veroboard
● Ugly style, Manhattan
● PCBs
● SMT versus through-hole

Gotchas

Gotchas
●Device power: 3.3V versus 5V (or less). Beware of cheap power
supplies.

●Serial ports: RS-232 versus TTL (or other) levels. DTE/DCE,
hardware handshaking, different connectors.

●USB: Different connectors. Some USB ports are for power only.
Host versus device. Power capability (don't exceed). hubs.

●ESD/static

References

References - Websites
● EEVBlog (YouTube, eevblog.com)
● Hack A Day (hackaday.com)
● Wikipedia has articles on most buses, protocols, etc.

References

References - Books
● Make: Electronics
● ARRL Handbook for Radio Communications
● Hacking the XBox, Andrew "Bunny" Huang
● Make magazine

References - Suppliers

References - Suppliers
●AdaFruit (adafruit.com)
●Amazon (amazon.com)
●Digi-key (digikey.com)
●Farnell/Element 14 (farnell.com)
●Jameco (jameco.com)
●Maker Shed (makershed.com)
●Mouser (mouser.com)
●SparkFun (sparkfun.com)

The End

●Thank you for attending
●Questions?

